[1] | WHO. World malaria report 2021[M]. Geneva: WHO, 2021: 17. | [2] | Fola AA,, Harrison GLA,, Hazairin MH, et al. Higher complexity of infection and genetic diversity of Plasmodium vivax than Plasmodium falciparum across all malaria transmission zones of Papua New Guinea[J]. Am J Trop Med Hyg, 2017, 96(3): 630-641. | [3] | Guerra CA,, Howes RE,, Patil AP, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009[J]. PLoS Negl Trop Dis, 2010, 4(8): e774. | [4] | Zhang XX,, Chu RL,, Xuan YH, et al. Research progress on proteins associated with Plasmodium vivax invasion of erythrocytes[J]. Chin J Parasitol Parasit Dis, 2018, 36(2): 161-165. (in Chinese) | [4] | ( 张馨心,, 楚瑞林,, 玄英花, 等. 间日疟原虫入侵红细胞的相关蛋白研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(2): 161-165.) | [5] | Zhang L,, YI BY,, Xia ZG, et al. Epidemiological characteristics of malaria in China, 2021[J]. Chin J Parasitol Parasit Dis, 2022, 40(2): 135-139. (in Chinese) | [5] | ( 张丽,, 易博禹,, 夏志贵, 等. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139.) | [6] | Feng J,, Zhang L,, Tu H, et al. From elimination to post-elimination: characteristics, challenges and re-transmission preventing strategy of imported malaria in China[J]. Chin Trop Med, 2021, 21(1): 5-10. (in Chinese) | [6] | ( 丰俊,, 张丽,, 涂宏, 等. 从消除到消除后: 中国输入性疟疾的疫情特征、挑战及防止再传播策略[J]. 中国热带医学, 2021, 21(1): 5-10.) | [7] | Cao J,, Liu YB,, Cao YY, et al. Sustained challenge to malaria elimination in China: imported malaria[J]. Chin J Parasitol Parasit Dis, 2018, 36(2): 93-96. (in Chinese) | [7] | ( 曹俊,, 刘耀宝,, 曹园园, 等. 中国消除疟疾的持续挑战:输入性疟疾[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(2): 93-96.) | [8] | Cowman AF,, Tonkin CJ,, Tham WH, et al. The molecular basis of erythrocyte invasion by malaria parasites[J]. Cell Host Microbe, 2017, 22(2): 232-245. | [9] | Pasvol G,, Weatherall DJ,, Wilson RJ. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum[J]. Br J Haematol, 1980, 45(2): 285-295. | [10] | Mitchell GH,, Hadley TJ,, McGinniss MH, et al. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors[J]. Blood, 1986, 67(5): 1519-1521. | [11] | Griffiths RE,, Kupzig S,, Cogan N, et al. The ins and outs of human reticulocyte maturation: autophagy and the endosome/exosome pathway[J]. Autophagy, 2012, 8(7): 1150-1151. | [12] | Lim C,, Pereira L,, Saliba KS, et al. Reticulocyte preference and stage development of Plasmodium vivax isolates[J]. J Infect Dis, 2016, 214(7): 1081-1084. | [13] | Chitnis CE,, Sharma A. Targeting the Plasmodium vivax Duffy-binding protein[J]. Trends Parasitol, 2008, 24(1): 29-34. | [14] | Ovchynnikova E,, Aglialoro F,, Bentlage AEH, et al. DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism[J]. Blood, 2017, 130(12): 1441-1444. | [15] | Kaur H,, Sehgal R,, Rani S. Duffy antigen receptor for chemokines (DARC) and susceptibility to Plasmodium vivax malaria[J]. Parasitol Int, 2019, 71: 73-75. | [16] | Gruszczyk J,, Kanjee U,, Chan LJ, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax[J]. Science, 2018, 359(6371): 48-55. | [17] | Kanjee U,, Rangel GW,, Clark MA, et al. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes[J]. Curr Opin Microbiol, 2018, 46: 109-115. | [18] | Galinski MR,, Medina CC,, Ingravallo P, et al. A reticulocyte-binding protein complex of Plasmodium vivax merozoites[J]. Cell, 1992, 69(7): 1213-1226. | [19] | Galinski MR,, Xu M,, Barnwell JW. Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family[J]. Mol Biochem Parasitol, 2000, 108(2): 257-262. | [20] | Urquiza M,, Patarroyo MA,, Marí V, et al. Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes[J]. Peptides, 2002, 23(12): 2265-2277. | [21] | Gaur D,, Singh S,, Singh S,, et al. Recombinant Plasmodium falciparum reticulocyte homology protein 4 binds to erythrocytes and blocks invasion[J]. Proc Natl Acad Sci USA, 2007, 104(45): 17789-17794. | [22] | Carlton JM,, Adams JH,, Silva JC, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax[J]. Nature, 2008, 455(7214): 757-763. | [23] | Li J,, Han ET. Dissection of the Plasmodium vivax reticulocyte binding-like proteins (PvRBPs)[J]. Biochem Biophys Res Commun, 2012, 426(1): 1-6. | [24] | Hester J,, Chan ER,, Menard D, et al. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes[J]. PLoS Negl Trop Dis, 2013, 7(12): e2569. | [25] | Gupta ED,, Anand G,, Singh H, et al. Naturally acquired human antibodies against reticulocyte-binding domains of Plasmodium vivax proteins, PvRBP2c and PvRBP1a, exhibit binding-inhibitory activity[J]. J Infect Dis, 2017, 215(10): 1558-1568. | [26] | França CT,, He WQ,, Gruszczyk J, et al. Plasmodium vivax reticulocyte binding proteins are key targets of naturally acquired immunity in young Papua new Guinean children[J]. PLoS Negl Trop Dis, 2016, 10(9): e0005014. | [27] | Chim-Ong A,, Surit T,, Chainarin S, et al. The blood stage antigen RBP2-P1 of Plasmodium vivax binds reticulocytes and is a target of naturally acquired immunity[J]. Infect Immun, 2020, 88(4): e00616-e00619. | [28] | Han JH,, Lee SK,, Wang B, et al. Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain[J]. Sci Rep, 2016, 6: 26993. | [29] | Han JH,, Lee SK,, Wang B, et al. Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain[J]. Sci Rep, 2016, 6: 26993. | [30] | Ntumngia FB,, Thomson-Luque R,, Galusic S, et al. Identification and immunological characterization of the ligand domain of Plasmodium vivax reticulocyte binding protein 1a[J]. J Infect Dis, 2018, 218(7): 1110-1118. | [31] | Gupta S,, Singh S,, Popovici J, et al. Targeting a reticulocyte binding protein and Duffy binding protein to inhibit reticulocyte invasion by Plasmodium vivax[J]. Sci Rep, 2018, 8: 10511. | [32] | Rayner JC,, Galinski MR,, Ingravallo P, et al. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion[J]. Proc Natl Acad Sci USA, 2000, 97(17): 9648-9653. | [33] | Chan LJ,, Dietrich MH,, Nguitragool W, et al. Plasmodium vivax reticulocyte binding proteins for invasion into reticulocytes[J]. Cell Microbiol, 2020, 22(1): e13110. | [34] | Malleret B,, Sahili AE,, Tay MZ, et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells[J]. Nat Microbiol, 2021, 6(8): 991-999. | [35] | Wright KE,, Hjerrild KA,, Bartlett J, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies[J]. Nature, 2014, 515(7527): 427-430. | [36] | Gruszczyk J,, Lim NTY,, Arnott A, et al. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement[J]. Proc Natl Acad Sci USA, 2016, 113(2): E191-E200. | [37] | Gruszczyk J,, Huang RK,, Chan LJ, et al. Cryo-EM structure of an essential Plasmodium vivax invasion complex[J]. Nature, 2018, 559(7712): 135-139. | [38] | Galinski MR,, Barnwell JW. Plasmodium vivax: merozoites, invasion of reticulocytes and considerations for malaria vaccine development[J]. Parasitol Today, 1996, 12(1): 20-29. | [39] | Ford A,, Kepple D,, Abagero BR, et al. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes[J]. PLoS Negl Trop Dis, 2020, 14(10): e0008234. | [40] | Kosaisavee V,, Lek-Uthai U,, Suwanarusk R, et al. Genetic diversity in new members of the reticulocyte binding protein family in Thai Plasmodium vivax isolates[J]. PLoS One, 2012, 7(3): e32105. | [41] | Han JH,, Li J,, Wang B, et al. Identification of immunodominant B-cell epitope regions of reticulocyte binding proteins in Plasmodium vivax by protein microarray based immunoscreening[J]. Korean J Parasitol, 2015, 53(4): 403-411. | [42] | Ovchynnikova E,, Aglialoro F,, Bentlage AEH, et al. DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism[J]. Blood, 2017, 130(12): 1441-1444. | [43] | Kanjee U,, Rangel GW,, Clark MA, et al. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes[J]. Curr Opin Microbiol, 2018, 46: 109-115. | [44] | Moras M,, Lefevre SD,, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals[J]. Front Physiol, 2017, 8: 1076. | [45] | Thomson-Luque R,, Wang CQ,, Ntumngia FB, et al. In-depth phenotypic characterization of reticulocyte maturation using mass cytometry[J]. Blood Cells Mol Dis, 2018, 72: 22-33. | [46] | Lawrence CM,, Ray S,, Babyonyshev M, et al. Crystal structure of the ectodomain of human transferrin receptor[J]. Science, 1999, 286(5440): 779-782. | [47] | Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54. | [48] | Cheng YF,, Zak O,, Aisen P, et al. Structure of the human transferrin receptor-transferrin complex[J]. Cell, 2004, 116(4): 565-576. | [49] | Chan LJ,, Gandhirajan A,, Carias LL, et al. Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b[J]. Nat Commun, 2021, 12(1): 1538. | [50] | Malleret B,, Rénia L,, Russell B. The unhealthy attraction of Plasmodium vivax to reticulocytes expressing transferrin receptor 1 (CD71)[J]. Int J Parasitol, 2017, 47(7): 379-383. | [51] | Segawa H,, Fukasawa Y,, Miyamoto K, et al. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity[J]. J Biol Chem, 1999, 274(28): 19745-19751. | [52] | Malleret B,, Li A,, Zhang R, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes[J]. Blood, 2015, 125(8): 1314-1324. | [53] | Mueller I,, Galinski MR,, Tsuboi T, et al. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets[J]. Adv Parasitol, 2013, 81: 77-131. | [54] | Céspedes N,, Li Wai Suen CSN,, Koepfli C, et al. Natural immune response to Plasmodium vivax alpha-helical coiled coil protein motifs and its association with the risk of P. vivax malaria[J]. PLoS One, 2017, 12(6): e0179863. | [55] | Tran TM,, Oliveira-Ferreira J,, Moreno A, et al. Comparison of IgG reactivities to Plasmodium vivax merozoite invasion antigens in a Brazilian Amazon population[J]. Am J Trop Med Hyg, 2005, 73(2): 244-255. | [56] | França CT,, White MT,, He WQ, et al. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development[J]. eLife, 2017, 6: e28673. | [57] | Longley RJ,, França CT,, White MT, et al. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand[J]. Malar J, 2017, 16(1): 178. | [58] | Chuquiyauri R,, Molina DM,, Moss EL, et al. Genome-scale protein microarray comparison of human antibody responses in Plasmodium vivax relapse and reinfection[J]. Am J Trop Med Hyg, 2015, 93(4): 801-809. | [59] | Longley RJ,, White MT,, Takashima E, et al. Development and validation of serological markers for detecting recent Plasmodium vivax infection[J]. Nat Med, 2020, 26(5): 741-749. | [60] | Hietanen J,, Chim-Ong A,, Chiramanewong T, et al. Gene models, expression repertoire, and immune response of Plasmodium vivax reticulocyte binding proteins[J]. Infect Immun, 2015, 84(3): 677-685. | [61] | Chen SL,, Liu TP,, Xu WY. Development of malaria vaccines and the challenges[J]. Chin J Parasitol Parasit Dis, 2021, 39(3): 283-295. (in Chinese) | [61] | ( 陈穗林,, 刘太平,, 徐文岳. 疟疾疫苗研制及其存在的问题[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 283-295.) |
|