[1] | WHO. World malaria report 2020[M]. Geneva: WHO, 2020. | [2] | Weiss DJ, Lucas TCD, Nguyen M, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study[J]. Lancet, 2019,394(10195):322-331. | [3] | Krief S, Escalante AA, Pacheco MA, et al. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos[J]. PLoS Pathog, 2010,6(2):e1000765. | [4] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016,167(3):610-624. | [5] | Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria[J]. Nat Rev Microbiol, 2017,15(8):479-491. | [6] | Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015,21(4):314-317. | [7] | Tan J, Pieper K, Piccoli L, et al. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens[J]. Nature, 2016,529(7584):105-109. | [8] | Saito F, Hirayasu K, Satoh T, et al. Corrigendum: immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2018,554(7693):554. | [9] | Helmby H, Cavelier L, Pettersson U, et al. Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface[J]. Infect Immun, 1993,61(1):284-288. | [10] | Kyes SA, Rowe JA, Kriek N, et al. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum[J]. Proc Natl Acad Sci USA, 1999,96(16):9333-9338. | [11] | Fernandez V, Hommel M, Chen Q, et al. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses[J]. J Exp Med, 1999,190(10):1393-1404. | [12] | Petter M, Haeggstr?m M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns[J]. Mol Biochem Parasitol, 2007,156(1):51-61. | [13] | Petter M, Bonow I, Klinkert MQ. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis[J]. PLoS One, 2008,3(11):e3779. | [14] | Joannin N, Abhiman S, Sonnhammer EL, et al. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family[J]. BMC Genomics, 2008,9:19. | [15] | Joannin N, Kallberg Y, Wahlgren M, et al. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum[J]. BMC Genomics, 2011,12:119. | [16] | McRobert L, Preiser P, Sharp S, et al. Distinct trafficking and localization of STEVOR proteins in three stages of the Plasmodium falciparum life cycle[J]. Infect Immun, 2004,72(11):6597-6602. | [17] | Bachmann A, Esser C, Petter M, et al. Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient[J]. PLoS One, 2009,4(10):e7459. | [18] | Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511. | [19] | Cheng Q, Cloonan N, Fischer K, et al. Stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens[J]. Mol Biochem Parasitol, 1998,97(1/2):161-176. | [20] | Hessa T, Kim H, Bihlmaier K, et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon[J]. Nature, 2005,433(7024):377-381. | [21] | Hiller NL Bhattacharjee S van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection[J]. Science, 2004,306(5703):1934-1937. | [22] | Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte[J]. Science, 2004,306(5703):1930-1933. | [23] | Bachmann A, Scholz JA, Jan?en M, et al. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes[J]. Malar J, 2015,14:274. | [24] | Harrison TE, M?rch AM, Felce JH, et al. Structural basis for RIFIN-mediated activation of LILRB1 in malaria[J]. Nature, 2020,587(7833):309-312. | [25] | Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum[J]. Annu Rev Microbiol, 2008,62(1):445-470. | [26] | Miller LH, Ackerman HC, Su XZ, et al. Malaria biology and disease pathogenesis: insights for new treatments[J]. Nat Med, 2013,19(2):156-167. | [27] | Vigan-Womas I, Guillotte M, Juillerat A, et al. Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting[J]. PLoS Pathog, 2012,8(7):e1002781. | [28] | Rowe JA, Handel IG, Thera MA, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting[J]. Proc Natl Acad Sci USA, 2007,104(44):17471-17476. | [29] | Cserti CM, Dzik WH. The ABO blood group system and Plasmodium falciparum malaria[J]. Blood, 2007,110(7):2250-2258. | [30] | Daniels G. Human Blood Groups,3rd edition[M]. Chichester: Wiley-Blackwell, 2013. | [31] | Albrecht L, Moll K, Blomqvist K, et al. Var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.2[J]. Malar J, 2011,10:17. | [32] | Stevenson L, Laursen E, Cowan GJ, et al. α2-macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes[J]. PLoS Pathog, 2015,11(7):e1005022. | [33] | Treutiger CJ, Scholander C, Carlson J, et al. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes[J]. Exp Parasitol, 1999,93(4):215-224. | [34] | Niang M, Bei AK, Madnani KG, et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting[J]. Cell Host Microbe, 2014,16(1):81-93. | [35] | McLean AR, Ataide R, Simpson JA, et al. Malaria and immunity during pregnancy and postpartum: a tale of two species[J]. Parasitology, 2015,142(8):999-1015. | [36] | Saito F, Hirayasu K, Satoh T, et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2017,552(7683):101-105. | [37] | Zhou AE, Berry AA, Bailey JA, et al. Antibodies to peptides in semiconserved domains of RIFINs and STEVORs correlate with malaria exposure[J]. mSphere, 2019,4(2):e00097-19. | [38] | Moll K, Palmkvist M, Ch’ng J, et al. Evasion of immunity to Plasmodium falciparum: rosettes of blood group A impair recognition of PfEMP1[J]. PLoS One, 2015,10(12):e0145120. | [39] | Pieper K, Tan J, Piccoli L, et al. Public antibodies to malaria antigens generated by two LAIR1 insertion modalities[J]. Nature, 2017,548(7669):597-601. | [40] | Lanzavecchia A. Dissecting human antibody responses: useful, basic and surprising findings[J]. EMBO Mol Med, 2018,10(3):e8879. | [41] | Naji A, Menier C, Morandi F, et al. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses[J]. J Immunol, 2014,192(4):1536-1546. | [42] | Chan JA, Howell KB, Reiling L, et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity[J]. J Clin Invest, 2012,122(9):3227-3238. | [43] | Kinyanjui SM, Bull P, Newbold CI, et al. Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens[J]. J Infect Dis, 2003,187(4):667-674. | [44] | Abdel-Latif MS, Khattab A, Lindenthal C, et al. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections[J]. Infect Immun, 2002,70(12):7013-7021. | [45] | Abdel-Latif MS, Cabrera G, K?hler C, et al. Antibodies to rifin: a component of naturally acquired responses to Plasmodium falciparum variant surface antigens on infected erythrocytes[J]. Am J Trop Med Hyg, 2004,71(2):179-186. | [46] | Arora G, Hart GT, Manzella-Lapeira J, et al. NK cells inhibit Plasmodium falciparum growth in red blood cells via antibody-dependent cellular cytotoxicity[J]. Elife, 2018,7:e36806. | [47] | Travassos MA, Niangaly A, Bailey JA, et al. Children with cerebral malaria or severe malarial anaemia lack immunity to distinct variant surface antigen subsets[J]. Sci Rep, 2018,8(1):6281. | [48] | Abdel-Latif MS, Dietz K, Issifou S, et al. Antibodies to Plasmodium falciparum rifin proteins are associated with rapid parasite clearance and asymptomatic infections[J]. Infect Immun, 2003,71(11):6229-6233. | [49] | Quintana MDP, Ch’ng JH, Moll K, et al. Antibodies in children with malaria to PfEMP1, RIFIN and SURFIN expressed at the Plasmodium falciparum parasitized red blood cell surface[J]. Sci Rep, 2018,8(1):3262. | [50] | Kanoi BN, Nagaoka H, White MT, et al. Global repertoire of human antibodies against Plasmodium falciparum RIFINs, SURFINs, and STEVORs in a malaria exposed population[J]. Front Immunol, 2020,11:893. | [51] | Kaur J, Hora R. ‘2TM proteins’: an antigenically diverse superfamily with variable functions and export pathways[J]. Peer J, 2018,6:e4757. | [52] | Beeson JG, Osier FH, Engwerda CR. Recent insights into humoral and cellular immune responses against malaria[J]. Trends Parasitol, 2008,24(12):578-584. |
|