[1] | van Gerwen OT, Camino AF, Sharma J, et al. Epidemiology, natural history, diagnosis, and treatment of Trichomonas vaginalis in men[J]. Clin Infect Dis, 2021, 73(6): 1119-1124. | [2] | Rowley J, Vander Hoorn S, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016[J]. Bull World Health Organ, 2019, 97(8): 548-562P. | [3] | Hamar B, Teutsch B, Hoffmann E, et al. Trichomonas vaginalis infection is associated with increased risk of cervical carcinogenesis: a systematic review and meta-analysis of 470 000 patients[J]. Int J Gynaecol Obstet, 2023, 163(1): 31-43. | [4] | Duan YJ, Li PJ, Sang YH, et al. Affect of Trichomonas vaginalis infection on male reproductive system and its mechanisms[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 532-536. (in Chinese) | | (段玉娟, 李朋举, 桑雨慧, 等. 阴道毛滴虫感染对男性生殖系统的影响及其机制[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 532-536.) | [5] | Zhang ZC, Li DX, Li YH, et al. The correlation between Trichomonas vaginalis infection and reproductive system cancer: a systematic review and meta-analysis[J]. Infect Agent Cancer, 2023, 18(1): 15. | [6] | Cooperative Group of Infectious Disease, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. Diagnosis and treatment guidelines for trichomoniasis (2021 revised edition)[J]. Chin J Obstet Gynecol, 2021, 56(1): 7-10. (in Chinese) | | (中华医学会妇产科学分会感染性疾病协作组. 阴道毛滴虫感染诊治指南(2021修订版)[J]. 中华妇产科杂志, 2021, 56(1): 7-10.) | [7] | Squires S, Mcfadzean JA. Strain sensitivity of Trichomonas vaginalis to metronidazole[J]. Br J Vener Dis, 1962, 38(4): 218-219. | [8] | Mtshali A, Ngcapu S, Govender K, et al. In vitro effect of 5-nitroimidazole drugs against Trichomonas vaginalis clinical isolates[J]. Microbiol Spectr, 2022, 10(4): e0091222. | [9] | O’Donoghue AJ, Bibo-Verdugo B, Miyamoto Y, et al. 20S proteasome as a drug target in Trichomonas vaginalis[J]. Antimicrob Agents Chemother, 2019, 63(11): e00448-e00419. | [10] | Fajtova P, Hurysz BM, Miyamoto Y, et al. Development of subunit selective substrates for Trichomonas vaginalis proteasome[J]. BioRxiv, 2023: 2023.04.05.535794. | [11] | Silhan J, Fajtova P, Bartosova J, et al. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors[J]. bioRxiv, 2023: 2023.08.17.553660. | [12] | Benítez-Cardoza CG, Brieba LG, Arroyo R, et al. Triosephosphate isomerase as a therapeutic target against trichomoniasis[J]. Mol Biochem Parasitol, 2021, 246: 111413. | [13] | Vique-Sánchez JL, Caro-Gómez LA, Brieba LG, et al. Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase[J]. Parasitol Int, 2020, 76: 102086. | [14] | Urbański LJ, di Fiore A, Azizi L, et al. Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1292-1299. | [15] | Urbański LJ, Angeli A, Mykuliak VV, et al. Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis[J]. J Mol Med, 2022, 100(1): 115-124. | [16] | Urbański LJ, Angeli A, Hyt?nen VP, et al. Inhibition of the newly discovered β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules[J]. J Inorg Biochem, 2020, 213: 111274. | [17] | Urbański LJ, Angeli A, Hyt?nen VP, et al. Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides[J]. J Enzyme Inhib Med Chem, 2021, 36(1): 329-334. | [18] | Vargas Rigo G, Gomes Cardoso F, Bongiorni Galego G, et al. Metallopeptidases as key virulence attributes of clinically relevant Protozoa: new discoveries, perspectives, and frontiers of knowledge[J]. Curr Protein Pept Sci, 2023, 24(4): 307-328. | [19] | Rigo GV, Cardoso FG, Pereira MM, et al. Peptidases are potential targets of copper(II)-1, 10-phenanthroline-5, 6-dione complex, a promising and potent new drug against Trichomonas vaginalis[J]. Pathogens, 2023, 12(5): 745. | [20] | Martínez-Rosas V, Hernández-Ochoa B, Navarrete-Vázquez G, et al. Kinetic and molecular docking studies to determine the effect of inhibitors on the activity and structure of fused G6PD-6PGL protein from Trichomonas vaginalis[J]. Molecules, 2022, 27(4): 1174. | [21] | Zhang ZC, Song XX, Deng YY, et al. Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins[J]. Acta Trop, 2023, 246: 106996. | [22] | Zhang ZC, Deng YY, Sheng WX, et al. The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells[J]. Parasit Vectors, 2023, 16(1): 210. | [23] | Gaglianone M, Laugieri ME, Rojas AL, et al. The L-rhamnose biosynthetic pathway in Trichomonas vaginalis: identification and characterization of UDP-D-glucose 4, 6-dehydratase[J]. Int J Mol Sci, 2022, 23(23): 14587. | [24] | Wang KH, Chang JY, Li FA, et al. An atypical F-actin capping protein modulates cytoskeleton behaviors crucial for Trichomonas vaginalis colonization[J]. Microbiol Spectr, 2023, 11(4): e0059623. | [25] | Weber JI, Rigo GV, Rocha DA, et al. Modulation of peptidases by 2, 4-diamine-quinazoline derivative induces cell death in the amitochondriate parasite Trichomonas vaginalis[J]. Biomed Pharma, 2021, 139: 111611. | [26] | Rodríguez-Villar K, Yépez-Mulia L, Cortés-Gines M, et al. Synthesis, antiprotozoal activity, and cheminformatic analysis of 2-phenyl-2H-indazole derivatives[J]. Molecules, 2021, 26(8): 2145. | [27] | Ibá?ez-Escribano A, Reviriego F, Vela N, et al. Promising hit compounds against resistant trichomoniasis: synthesis and antiparasitic activity of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles[J]. Bioorg Med Chem Lett, 2021, 37: 127843. | [28] | Mena-Rejón G, Pérez-Navarro Y, Torres-Romero JC, et al. Antitrichomonal activity and docking analysis of thiazole derivatives as TvMP50 protease inhibitors[J]. Parasitol Res, 2021, 120(1): 233-241. | [29] | Alves MSD, Sena-Lopes ?, das Neves RN, et al. In vitro and in silico trichomonacidal activity of 2, 8-bis (trifluoromethyl) quinoline analogs against Trichomonas vaginalis[J]. Parasitol Res, 2022, 121(9): 2697-2711. | [30] | Rigo GV, Joaquim AR, Macedo AJ, et al. Iron chelation and inhibition of metallopeptidases mediate anti-Trichomonas vaginalis activity by a novel 8-hydroxyquinoline derivative[J]. Bioorg Chem, 2022, 125: 105912. | [31] | Jain E, Zaenker EI, Hoffman PS, et al. In vitro activity of amixicile against T. vaginalis from clinical isolates[J]. Parasitol Res, 2022, 121(8): 2453-2455. | [32] | Hernández-Ochoa B, Martínez-Rosas V, Morales-Luna L, et al. Pyridyl methylsulfinyl benzimidazole derivatives as promising agents against Giardia lamblia and Trichomonas vaginalis[J]. Molecules, 2022, 27(24): 8902. | [33] | Natto MJ, Hulpia F, Kalkman ER, et al. Deazapurine nucleoside analogues for the treatment of Trichomonas vaginalis[J]. ACS Infect Dis, 2021, 7(6): 1752-1764. | [34] | Beteck RM, Isaacs M, Legoabe LJ, et al. Synthesis and in vitro antiprotozoal evaluation of novel metronidazole-Schiff base hybrids[J]. Arch Pharm, 2023, 356(3): e2200409. | [35] | Vargas Rigo G, Willig JB, Devereux M, et al. Oxidative damage by 1, 10-phenanthroline-5, 6-dione and its silver and copper complexes lead to apoptotic-like death in Trichomonas vaginalis[J]. Res Microbiol, 2023, 174(4): 104015. | [36] | de Souza TG, Benaim G, de Souza W, et al. Effects of amiodarone, amioder, and dronedarone on Trichomonas vaginalis[J]. Parasitol Res, 2022, 121(6): 1761-1773. | [37] | de Giacometi M, Mayer JCP, de Mello AB, et al. Activity of compounds derived from benzofuroxan in Trichomonas vaginalis[J]. Exp Parasitol, 2023, 253: 108601. | [38] | Oliveira LR, Trein MR, Assis LR, et al. Phenolic chalcones as agents against Trichomonas vaginalis[J]. Bioorg Chem, 2023, 141: 106888. | [39] | Herrera-Espa?a AD, Aguiar-Pech JA, Alvarez-Sánchez ME, et al. Lupeol acetate isolated from Chrysophyllum cainito L. fruit as a template for the synthesis of N-alkyl-arylsulfonamide derivatives and their synergistic effects with metronidazole against Trichomonas vaginalis[J]. Nat Prod Res, 2022, 36(21): 5508-5516. | [40] | de Souza TG, Granado R, Benaim G, et al. Effects of SQ109 on Trichomonas vaginalis[J]. Exp Parasitol, 2023, 250: 108549. | [41] | Miyamoto Y, Aggarwal S, Celaje JJA, et al. Gold (I) phosphine derivatives with improved selectivity as topically active drug leads to overcome 5-nitroheterocyclic drug resistance in Trichomonas vaginalis[J]. J Med Chem, 2021, 64(10): 6608-6620. | [42] | Ibá?ez-Escribano A, Fonseca-Berzal C, Martínez-Montiel M, et al. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis[J]. J Enzyme Inhib Med Chem, 2022, 37(1): 781-791 |
|