中国寄生虫学与寄生虫病杂志 ›› 2020, Vol. 38 ›› Issue (4): 477-481.doi: 10.12140/j.issn.1000-7423.2020.04.014
收稿日期:
2019-10-22
出版日期:
2020-08-30
发布日期:
2020-09-09
通讯作者:
陈家旭
作者简介:
刘毅(1981-),男,讲师,博士研究生,从事寄生虫感染免疫研究。E-mail:基金资助:
LIU Yi1,2(), CAI Yu-chun2, CHEN Shao-hong2, CHEN Jia-xu2,*(
)
Received:
2019-10-22
Online:
2020-08-30
Published:
2020-09-09
Contact:
CHEN Jia-xu
Supported by:
摘要:
自然杀伤T(NKT)细胞是一种同时具有T细胞与NK细胞表面标志的固有免疫细胞。NKT细胞活化后分泌的细胞因子具有影响适应性免疫的性质,是联系固有免疫和适应性免疫的桥梁之一,参与抗感染、肿瘤免疫、自身免疫病等过程。NKT细胞在寄生虫感染的免疫过程中也发挥着承接固有免疫与适应性免疫的重要作用,但目前对该领域的研究相对较少。本文主要对NKT细胞在利什曼原虫、疟原虫、锥虫和血吸虫感染免疫中作用的研究进展进行综述。
中图分类号:
刘毅, 蔡玉春, 陈韶红, 陈家旭. 自然杀伤T细胞在寄生虫感染免疫中作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 477-481.
LIU Yi, CAI Yu-chun, CHEN Shao-hong, CHEN Jia-xu. Advances in research on the roles of natural killer T cells in immune responses to parasitic infections[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2020, 38(4): 477-481.
[1] |
Farr AR, Wu WS, Choi B, et al. CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells[J]. Proc Natl Acad Sci USA, 2014,111(35):12841-12846.
doi: 10.1073/pnas.1323405111 pmid: 25143585 |
[2] |
Wang C, Liu X, Li ZY, et al. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs[J]. Sci Rep, 2015,5:14124.
pmid: 26369936 |
[3] |
Kaszubowska L, Foerster J, Kwiatkowski P, et al. NKT-like cells reveal higher than T lymphocytes expression of cellular protective proteins HSP70 and SOD2 and comparably increased expression of SIRT1 in the oldest seniors[J]. Folia Histochem Cytobiol, 2018,56(4):231-240.
doi: 10.5603/FHC.a2018.0025 pmid: 30633320 |
[4] |
Holzapfel KL, Tyznik AJ, Kronenberg M, et al. Antigen-dependent versus-independent activation of invariant NKT cells during infection[J]. J Immunol, 2014,192(12):5490-5498.
pmid: 24813205 |
[5] |
Liao CM, Zimmer MI, Wang CR. The functions of type I and type II natural killer T cells in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2013,19(6):1330-1338.
doi: 10.1097/MIB.0b013e318280b1e3 |
[6] |
Tormo N, del Remedio Guna M, Teresa Fraile M, et al. Immunity to parasites[J]. Curr Immunol Rev, 2011,7(1):25-43.
doi: 10.2174/157339511794474235 |
[7] | Yang JQ, Zhou YH, Singh RR. Effects of invariant NKT cells on parasite infections and hygiene hypojournal[J]. J Immunol Res, 2016: 2395645. |
[8] |
Smiley ST, Lanthier PA, Couper KN, et al. Exacerbated susceptibility to infection-stimulated immunopathology in CD1d-deficient mice[J]. J Immunol, 2005,174(12):7904-7911.
doi: 10.4049/jimmunol.174.12.7904 pmid: 15944296 |
[9] |
Ronet C, Darche S, Leite de Moraes M, et al. NKT cells are critical for the initiation of an inflammatory bowel response against Toxoplasma gondii[J]. J Immunol, 2005,175(2):899-908.
doi: 10.4049/jimmunol.175.2.899 pmid: 16002688 |
[10] |
Lotter H, González-Roldán N, Lindner B, et al. Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess[J]. PLoS Pathog, 2009,5(5):e1000434.
doi: 10.1371/journal.ppat.1000434 pmid: 19436711 |
[11] |
Lotter H, Helk E, Bernin H, et al. Testosterone increases susceptibility to amebic liver abscess in mice and mediates inhibition of IFNγ secretion in natural killer T cells[J]. PLoS One, 2013,8(2):e55694.
doi: 10.1371/journal.pone.0055694 pmid: 23424637 |
[12] |
Zamora-Chimal J, Hernández-Ruiz J, Becker I. NKT cells in leishmaniasis[J]. Immunobiology, 2017,222(4):641-646.
doi: 10.1016/j.imbio.2016.11.014 pmid: 28012583 |
[13] |
Belo R, Santarém N, Pereira C, et al. Leishmania infantum exoproducts inhibit human invariant NKT cell expansion and activation[J]. Front Immunol, 2017,8:710.
doi: 10.3389/fimmu.2017.00710 pmid: 28674535 |
[14] |
Zamora-Chimal J, Fernández-Figueroa EA, Ruiz-Remigio A, et al. NKT cell activation by Leishmania mexicana LPG: Description of a novel pathway[J]. Immunobiology, 2017,222(2):454-462.
doi: 10.1016/j.imbio.2016.08.003 pmid: 27523746 |
[15] |
Jafarzadeh A, Nemati M, Sharifi I, et al. Leishmania species-dependent functional duality of toll-like receptor 2[J]. IUBMB Life, 2019,71(11):1685-1700.
doi: 10.1002/iub.2129 pmid: 31329370 |
[16] |
Kumari S, Jamal F, Shivam P, et al. Leishmania donovani skews the CD56(+) natural killer T cell response during human visceral leishmaniasis[J]. Cytokine, 2015,73(1):53-60.
doi: 10.1016/j.cyto.2015.01.011 pmid: 25697139 |
[17] |
Kumari S, Shivam P, Kumar S, et al. Leishmania donovani mediated higher expression of CCL4 induces differential accumulation of CD4+CD56+NKT and CD8+CD56+NKT cells at infection site[J]. Cytokine, 2018,110:306-315.
doi: 10.1016/j.cyto.2018.03.022 pmid: 29807685 |
[18] |
Kumari S, Shivam P, Hansa J, et al. CD8dim but not CD8bright cells positive to CD56 dominantly express KIR and are cytotoxic during visceral leishmaniasis[J]. Hum Immunol, 2018,79(8):616-620.
doi: 10.1016/j.humimm.2018.05.004 pmid: 29842895 |
[19] |
Ferraz R, Cunha CF, Pimentel MIF, et al. CD3+CD4negCD8neg (double negative) T lymphocytes and NKT cells as the main cytotoxic-related-CD107a+ cells in lesions of cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis[J]. Parasit Vectors, 2017,10(1):219.
doi: 10.1186/s13071-017-2152-2 pmid: 28468680 |
[20] |
Cunha CF, Ferraz R, Pimentel MI, et al. Cytotoxic cell involvement in human cutaneous leishmaniasis: assessments in active disease, under therapy and after clinical cure[J]. Parasite Immunol, 2016,38(4):244-254.
doi: 10.1111/pim.12312 pmid: 26928901 |
[21] |
Miller JL, Sack BK, Baldwin M, et al. Interferon-mediated innate immune responses against malaria parasite liver stages[J]. Cell Rep, 2014,7(2):436-447.
doi: 10.1016/j.celrep.2014.03.018 pmid: 24703850 |
[22] |
Ng SS, Engwerda CR. Innate lymphocytes and malaria-players or spectators?[J]. Trends Parasitol, 2019,35(2):154-162.
doi: 10.1016/j.pt.2018.11.012 pmid: 30579700 |
[23] |
Chaves YO, da Costa AG, Pereira MLM, et al. Immune response pattern in recurrent Plasmodium vivax malaria[J]. Malar J, 2016,15:445.
doi: 10.1186/s12936-016-1501-5 pmid: 27581163 |
[24] |
Kijogi C, Kimura D, Bao LQ, et al. Modulation of immune responses by Plasmodium falciparum infection in asymptomatic children living in the endemic region of Mbita, western Kenya[J]. Parasitol Int, 2018,67(3):284-293.
doi: 10.1016/j.parint.2018.01.001 pmid: 29353010 |
[25] |
Lehmann JS, Campo JJ, Cicéron M, et al. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti[J]. PLoS One, 2017,12(4):e0174718.
doi: 10.1371/journal.pone.0174718 pmid: 28369062 |
[26] |
Mpina M, Maurice NJ, Yajima M, et al. Controlled human malaria infection leads to long-lasting changes in innate and innate-like lymphocyte populations[J]. J Immunol, 2017,199(1):107-118.
doi: 10.4049/jimmunol.1601989 pmid: 28576979 |
[27] | Coelho-Dos-Reis JG, Li XM, Tsuji M. Development of a novel mechanism-based glycolipid adjuvant for vaccination[J]. F1000 Res, 2018,7. |
[28] |
Li XM, Kawamura A, Andrews CD, et al. Colocalization of a CD1d-binding glycolipid with a radiation-attenuated sporozoite vaccine in lymph node-resident dendritic cells for a robust adjuvant effect[J]. J Immunol, 2015,195(6):2710-2721.
doi: 10.4049/jimmunol.1403017 pmid: 26254338 |
[29] |
Li XM, Huang J, Kawamura A, et al. Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect[J]. Vaccine, 2017,35(24):3171-3177.
doi: 10.1016/j.vaccine.2017.04.077 pmid: 28483194 |
[30] |
Li XM, Huang J, Kaneko I, et al. A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice[J]. Expert Rev Vaccines, 2017,16(1):73-80.
doi: 10.1080/14760584.2017.1256208 pmid: 27801602 |
[31] |
Coelho-Dos-Reis JG, Huang J, Tsao T, et al. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells[J]. Clin Immunol, 2016,168:6-15.
doi: 10.1016/j.clim.2016.04.014 pmid: 27132023 |
[32] |
Filtjens J, Coltel N, Cencig S, et al. The Ly49E receptor inhibits the immune control of acute Trypanosoma cruzi infection[J]. Front Immunol, 2016,7:472.
doi: 10.3389/fimmu.2016.00472 pmid: 27891126 |
[33] |
Guilmot A, Carlier Y, Truyens C. Differential IFN-γ production by adult and neonatal blood CD56+ natural killer (NK) and NK-like-T cells in response to Trypanosoma cruzi and IL-15[J]. Parasite Immunol, 2014,36(1):43-52.
doi: 10.1111/pim.12077 |
[34] |
Colato RP, Brazão V, Santello FH, et al. Ageing is not associated with an altered immune response during Trypanosoma cruzi infection[J]. Exp Gerontol, 2017,90:43-51.
doi: 10.1016/j.exger.2017.01.022 pmid: 28131881 |
[35] |
Deleeuw V, Pham HTT, De Poorter I, et al. Trypanosoma brucei brucei causes a rapid and persistent influx of neutrophils in the spleen of infected mice[J]. Parasite Immunol, 2019,41(10):e12664.
doi: 10.1111/pim.12664 pmid: 31325372 |
[36] |
Matos MN, Cazorla SI, Schulze K, et al. Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi[J]. PLoS Negl Trop Dis, 2017,11(2):e0005300.
doi: 10.1371/journal.pntd.0005300 pmid: 28234897 |
[37] |
Mallevaey T, Fontaine J, Breuilh L, et al. Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis[J]. Infect Immun, 2007,75(5):2171-2180.
doi: 10.1128/IAI.01178-06 pmid: 17353286 |
[38] |
Li L, Xie HY, Wang M, et al. Characteristics of IL-9 induced by Schistosoma japonicum infection in C57BL/6 mouse liver[J]. Sci Rep, 2017,7(1):2343.
doi: 10.1038/s41598-017-02422-8 pmid: 28539607 |
[39] |
Cha HF, Qin WJ, Yang Q, et al. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice[J]. Parasitol Res, 2017,116(2):559-567.
doi: 10.1007/s00436-016-5320-y pmid: 27904959 |
[40] |
Chen DH, Zhao Y, Feng YF, et al. Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice[J]. Innate Immun, 2019,25(4):224-234.
doi: 10.1177/1753425919840424 pmid: 31018808 |
[41] | Sun T, Li G, Chen MJ, et al. Change of the Vα24 NKT cells in peripheral blood of the patients with advanced schistosomiasis and its relation to the degree of hepatic fibrosis[J]. Chin J Parasitol Parasit Dis, 2014,32(5):348-351. (in Chinese) |
( 孙婷, 李刚, 陈茂剑, 等. 晚期血吸虫病患者外周血Vα24自然杀伤T细胞的变化及其与肝纤维化程度的关系[J]. 中国寄生虫学与寄生虫病杂志, 2014,32(5):348-351.) |
[1] | 姜文静, 孟雅莉, 赵利娜, 王春苗, 张晓磊. 刚地弓形虫棒状体蛋白18和膜表面抗原30复合核酸疫苗对小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 532-538. |
[2] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[3] | 张旭, 孙希萌. 旋毛虫感染免疫逃逸机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 492-496. |
[4] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[5] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[6] | 郭刚, 任远, 焦红杰, 武娟, 郭宝平, 齐文静, 李军, 张文宝. 腹腔感染棘球蚴微囊对小鼠肝脏多房棘球蚴感染及致病的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 156-162. |
[7] | 郝会囡, 程永康, 张茹, 韩璐璐, 宋艳艳, 龙绍蓉, 刘若丹, 张玺, 王中全, 崔晶. 旋毛虫新生幼虫可溶性抗原的免疫蛋白组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 176-182. |
[8] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
[9] | 栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91. |
[10] | 蒋天哥, 曾文博, 李中秋, 张仪. 非编码RNA在利什曼病中的调控作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 92-97. |
[11] | 侯昕伶, 李德伟, 施阳, 王茂林, 孜比姑·肉素, 阿比旦·艾尼瓦尔, 郑旭然, 康雪娇, 王慧, 李静, 张传山. 多房棘球蚴感染小鼠腹腔ST2+ T细胞亚群功能及其免疫检查点分子表达变化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 708-716. |
[12] | 秦源, 刘华, 沈玉娟. HIV/AIDS合并毕氏肠微孢子虫感染的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 760-766. |
[13] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[14] | 严晓岚, 闻礼永, 熊彦红, 郑彬, 张剑锋, 汪天平, 俞丽玲, 许国章, 林丹丹, 周晓农. 《日本血吸虫抗体检测标准 酶联免疫吸附试验法》解读[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 798-800. |
[15] | 李腾, 沈玉娟, 崔丽君, 刘华, 胡媛, 姜岩岩, 曹建平. 长链非编码RNA NEAT1通过调控IL-8参与肠上皮细胞抗隐孢子虫反应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 487-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||