[1] | 诸欣平, 苏川. 人体寄生虫学[M]. 9版. 北京: 人民卫生出版社, 2018: 93-97. | | Zhu XP, Su C. Human parasitology[M]. 9th ed. Beijing: People’s Medical Publishing House, 2018: 93-97. (in Chinese) | [2] | 陈颖丹, 周长海, 朱慧慧, 等. 2015年全国人体重点寄生虫病现状调查分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1): 5-16. | | Chen YD, Zhou CH, Zhu HH, et al. National survey on the current status of important human parasitic diseases in China in 2015[J]. Chin J Parasitol Parasit Dis, 2020, 38(1): 5-16. (in Chinese) | [3] | Qian MB, Utzinger J, Keiser J, et al. Clonorchiasis[J]. Lancet, 2016, 387(10020): 800-810. | [4] | Tang ZL, Huang Y, Yu XB. Current status and perspectives of Clonorchis sinensis and clonorchiasis: Epidemiology, pathogenesis, omics, prevention and control[J]. Infect Dis Poverty, 2016, 5: 71. | [5] | Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: Immune regulation of wound healing in a solid organ[J]. Nat Rev Immunol, 2014, 14(3): 181-194. | [6] | Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. | [7] | 邹学华, 陈良贵, 何丽洁, 等. 华枝睾吸虫病4 679例临床分析[J]. 中国热带医学, 2004, 4(2): 227-228. | | Zou XH, Chen LG, He LJ, et al. Clinical analysis of 4 679 clonorchiasis patients[J]. China Trop Med, 2004, 4(2): 227-228. (in Chinese) | [8] | 王兆为, 余珂, 王武, 等. 162例肝吸虫病临床分析[J]. 中国热带医学, 2014, 14(11): 1384-1385, 1390. | | Wang ZW, Yu K, Wang W, et al. Clinical analysis of 162 clonorchiasis cases[J]. China Trop Med, 2014, 14(11): 1384-1385, 1390. (in Chinese) | [9] | Yan C, Wang L, Li B, et al. The expression dynamics of transforming growth factor-β/Smad signaling in the liver fibrosis experimentally caused by Clonorchis sinensis[J]. ParasitVectors, 2015, 8: 70. | [10] | Wang Y, Gong P, Zhang X, et al. TLR3 activation by Clonorchis sinensis infection alleviates the fluke-induced liver fibrosis[J]. PLoS Negl Trop Dis, 2023, 17(5): e0011325. | [11] | Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer[J]. Cell, 2023, 186(8): 1610-1626. | [12] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. | [13] | Valadi H, Ekstr?m K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659. | [14] | Hu XJ, Ge QL, Zhang YT, et al. A review of the effect of exosomes from different cells on liver fibrosis[J]. Biomed Pharmacother, 2023, 161: 114415. | [15] | Chen L, Yao X, Yao H, et al. Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells[J]. FASEB J, 2020, 34(4): 5178-5192. | [16] | Chen L, Huang Y, Duan Z, et al. Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2[J]. Front Cell Dev Biol, 2021, 9: 716209. | [17] | Wang LF, Liao Y, Yang RB, et al. Sja-miR-71a in schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by schistosomiasis via targeting semaphorin 4D[J]. J Extracell Vesicles, 2020, 9(1): 1785738. | [18] | Wang Y, Gong W, Zhou H, et al. A novel miRNA from egg-derived exosomes of Schistosoma japonicum promotes liver fibrosis in murine schistosomiasis[J]. Front Immunol, 2022, 13: 860807. | [19] | 梁翠莎, 陈剑煌, 徐鸣阳, 等. 家猫华支睾吸虫感染状况与肝胆管病变观察[J]. 热带医学杂志, 2021, 21(12): 1509-1511, 1538, 1641. | | Liang CS, Chen JH, Xu MY, et al. Clonorchis sinensis infection situation and hepatobiliary duct lesion observation in domestic cats[J]. J Trop Med, 2021, 21(12): 1509-1511, 1538, 1641. (in Chinese) | [20] | Coppola N, Potenza N, Pisaturo M, et al. Liver microRNA hsa-miR-125a-5p in HBV chronic infection: Correlation with HBV replication and disease progression[J]. PLoS One, 2013, 8(7): e65336. | [21] | Isaac R, Reis FCG, Ying W, et al. Exosomes as mediators of intercellular crosstalk in metabolism[J]. Cell Metab, 2021, 33(9): 1744-1762. | [22] | Chen L, Chen R, Kemper S, et al. Therapeutic effects of serum extracellular vesicles in liver fibrosis[J]. J Extracell Vesicles, 2018, 7(1): 1461505. | [23] | Potenza N, Russo A. Biogenesis, evolution and functional targets of microRNA-125a[J]. Mol Genet Genom, 2013, 288(9): 381-389. | [24] | 林德照, 郑建建, 林镯, 等. 血浆miR-125a-5p在肝纤维化患者中的表达及意义[J]. 中国卫生检验杂志, 2014, 24(3): 380-382. | | Lin DZ, Zheng JJ, Lin Z, et al. miR-125a-5p expression and its clinical significance in liver fibrosis patients[J]. Chin J Health Lab Technol, 2014, 24(3): 380-382. (in Chinese) | [25] | Chang Y, Han JA, Kang SM, et al. Clinical impact of serum exosomal microRNA in liver fibrosis[J]. PLoS One, 2021, 16(9): e0255672. | [26] | Cao S, Wang D, Wu Y, et al. Mmu-miRNA-342-3p promotes hepatic stellate cell activation and hepatic fibrosis induced by Echinococcus multilocularis infection via targeting Zbtb7a[J]. PLoS Negl Trop Dis, 2023, 17(7): e0011520. | [27] | You K, Li SY, Gong J, et al. microRNA-125b promotes hepatic stellate cell activation and liver fibrosis by activating RhoA signaling[J]. Mol Ther Nucleic Acids, 2018, 12: 57-66. | [28] | Tao L, Yang GY, Sun TT, et al. Capsaicin receptor TRPV1 maintains quiescence of hepatic stellate cells in the liver via recruitment of SARM1[J]. J Hepatol, 2023, 78(4): 805-819. | [29] | Zhou BS, Zeng S, Li L, et al. Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-β signaling[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2016, 1862(6): 1203-1213. | [30] | Xuan J, Zhu DM, Cheng ZY, et al. Crocin inhibits the activation of mouse hepatic stellate cells via the lnc-LFAR1/MTF-1/GDNF pathway[J]. Cell Cycle, 2020, 19(24): 3480-3490. | [31] | Wang XH, Ai LY, Xu QQ, et al. A20 attenuates liver fibrosis in NAFLD and inhibits inflammation responses[J]. Inflammation, 2017, 40(3): 840-848. | [32] | O’Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol (Lausanne), 2018, 9: 402. | [33] | Foglia B, Cannito S, Bocca C, et al. ERK pathway in activated, myofibroblast-like, hepatic stellate cells: A critical signaling crossroad sustaining liver fibrosis[J]. Int J Mol Sci, 2019, 20(11): E2700. | [34] | Ni MM, Wang YR, Wu WW, et al. Novel insights on notch signaling pathways in liver fibrosis[J]. Eur J Pharmacol, 2018, 826: 66-74. | [35] | Nishikawa K, Osawa Y, Kimura K. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs[J]. Int J Mol Sci, 2018, 19(10): E3103. | [36] | Chen Y, Zhao C, Liu X, et al. Plumbagin ameliorates liver fibrosis via a ROS-mediated NF-кB signaling pathway in vitro and in vivo[J]. Biomed Pharmacother, 2019, 116: 108923. | [37] | Loos B, Engelbrecht AM, Lockshin RA, et al. The variability of autophagy and cell death susceptibility[J]. Autophagy, 2013, 9(9): 1270-1285. | [38] | Le TV, Phan-Thi HT, Huynh-Thi MX, et al. Autophagy inhibitor chloroquine downmodulates hepatic stellate cell activation and liver damage in bile-duct-ligated mice[J]. Cells, 2023, 12(7): 1025. | [39] | Lucantoni F, Martínez-Cerezuela A, Gruevska A, et al. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: Are we there yet?[J]. J Pathol, 2021, 254(3): 216-228. | [40] | Kim KM, Han CY, Kim JY, et al. Gα12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells[J]. J Hepatol, 2018, 68(3): 493-504. | [41] | Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases[J]. Cells, 2019, 8(12): E1597. | [42] | Seo HY, Lee SH, Han E, et al. Increased levels of phosphorylated ERK induce CTGF expression in autophagy-deficient mouse hepatocytes[J]. Cells, 2022, 11(17): 2704. |
|