[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022: 22-23. | [2] | Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) | | (丰俊, 张丽, 夏志贵, 等. 中国消除疟疾:重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | [3] | Zhang L, Yi BY, Xia ZG, et al. Epidemiological characteristics of malaria in China, 2021[J]. Chin J Parasitol Parasit Dis, 2022, 40(2): 135-139. (in Chinese) | | (张丽, 易博禹, 夏志贵, 等. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139.) | [4] | Zhang L, Yi BY, Yin JH, et al. Epidemiological characteristics of malaria in China, 2022[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 137-141. (in Chinese) | | (张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141.) | [5] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55. | [6] | Ross LS, Dhingra SK, Mok S, et al. Emerging Southeast Asian Pfcrt mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine[J]. Nat Commun, 2018, 9(1): 3314. | [7] | Somé AF, Séré YY, Dokomajilar C, et al. Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisinin-piperaquine in Burkina Faso[J]. Antimicrob Agents Chemother, 2010, 54(5): 1949-1954. | [8] | McCollum AM, Poe AC, Hamel M, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles[J]. J Infect Dis, 2006, 194(2): 189-197. | [9] | Vinayak S, Alam MT, Mixson-Hayden T, et al. Origin and evolution of sulfadoxine resistant Plasmodium falciparum[J]. PLoS Pathog, 2010, 6(3): e1000830. | [10] | Zhao DY, Zhang HW, Ji PH, et al. Surveillance of antimalarial drug-resistance genes in imported Plasmodium falciparum isolates from Nigeria in Henan, China, 2012—2019[J]. Front Cell Infect Microbiol, 2021, 11: 644576. | [11] | Flegg JA, Metcalf CJE, Gharbi M, et al. Trends in antimalarial drug use in Africa[J]. Am J Trop Med Hyg, 2013, 89(5): 857-865. | [12] | Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009, 361(5): 455-467. | [13] | Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014, 371(5): 411-423. | [14] | Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda[J]. Nat Med, 2020, 26(10): 1602-1608. | [15] | World Health Organization. Report on antimalarial drug efficacy, resistance and response[R]. Geneva: WHO, 2020: 22-24. | [16] | Taylor SM, Parobek CM, DeConti DK, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study[J]. J Infect Dis, 2015, 211(5): 680-688. | [17] | Otienoburu SD, Suay I, Garcia S, et al. An online mapping database of molecular markers of drug resistance in Plasmodium falciparum: the ACT Partner Drug Molecular Surveyor[J]. Malar J, 2019, 18(1): 12. | [18] | Mwanza S, Joshi S, Nambozi M, et al. The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia[J]. Malar J, 2016, 15(1): 584. | [19] | Ndam NT, Basco LK, Ngane VF, et al. Reemergence of chloroquine-sensitive pfcrt K76 Plasmodium falciparum genotype in southeastern Cameroon[J]. Malar J, 2017, 16(1): 130. | [20] | Nie GK, Xu C, Wei QK, et al. Analysis of drug-resistant gene polymorphisms in Plasmodium falciparum imported from Equatorial Guinea to Shandong Province in 2015 and 2016[J]. Chin J Schisto Control, 2020, 32(6): 612-617. | | (聂广馗, 徐超, 魏庆宽, 等. 2015—2016年山东省由赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国血吸虫病防治杂志, 2020, 32(6): 612-617.) | [21] | He JQ, Chen JT, Li JH, et al. Drug-resistant gene polymorphisms in Plasmodium falciparum isolated from Bioko Island, Equatorial Guinea in 2018 and 2019[J]. Chin J Schisto Control, 2021, 33(4): 396-400. | | (何金泉, 陈江涛, 李敬河, 等. 2018—2019年赤道几内亚Bioko岛恶性疟原虫抗药性基因多态性分析[J]. 中国血吸虫病防治杂志, 2021, 33(4): 396-400.) | [22] | Duraisingh MT, Cowman AF. Contribution of the Pfmdr1 gene to antimalarial drug-resistance[J]. Acta Trop, 2005, 94(3): 181-190. | [23] | Gupta H, Macete E, Bulo H, et al. Drug-resistant polymorphisms and copy numbers in Plasmodium falciparum, Mozambique, 2015[J]. Emerg Infect Dis, 2018, 24(1): 40-48. | [24] | Berzosa P, Molina de la Fuente I, Ta-Tang TH, et al. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019)[J]. Malar J, 2021, 20(1): 463. | [25] | Adegbola AJ, Ijarotimi OA, Ubom AE, et al. A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria[J]. Malar J, 2023, 22(1): 71. | [26] | Naidoo I, Roper C. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria[J]. Trends Parasitol, 2013, 29(10): 505-515. | [27] | Picot S, Olliaro P, de Monbrison F, et al. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria[J]. Malar J, 2009, 8: 89. |
|