CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (5): 593-600.doi: 10.12140/j.issn.1000-7423.2023.05.011
• ORIGINAL ARTICLES • Previous Articles Next Articles
ZHOU Ruimin(), JI Penghui, LI Suhua, YANG Chengyun, LIU Ying, QIAN Dan, DENG Yan, LU Deling, ZHAO Yuling, ZHAO Dongyang, ZHANG Hongwei*(
)
Received:
2023-05-21
Revised:
2023-07-31
Online:
2023-10-30
Published:
2023-11-06
Contact:
*E-mail: CLC Number:
ZHOU Ruimin, JI Penghui, LI Suhua, YANG Chengyun, LIU Ying, QIAN Dan, DENG Yan, LU Deling, ZHAO Yuling, ZHAO Dongyang, ZHANG Hongwei. Polymorphism analysis of drug resistance genes in imported Plasmodium falciparum isolates from Equatorial Guinea in Henan Province[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 593-600.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.05.011
Table 1
Primer sequences and amplication conditions of target genes
基因 Gene | 引物名称 Primer name | 引物序列(5'→3') Primer sequences (5'→3') | 退火条件 Amplification conditions | 产物长度/bp Product length/bp |
---|---|---|---|---|
PfK13 | K13-1F | CGGAGTGACCAAATCTGGGA | 60 ℃ 90 s | 2 097 |
K13-1R | GGGAATCTGGTGGTAACAGC | |||
K13-2F | GCCAAGCTGCCATTCATTTG | 60 ℃ 90 s | 850 | |
K13-2R | GCCTTGTTGAAAGAAGCAGA | |||
Pfcrt | Pfcrt-1F | CCGTTAATAATAAATACACGCAG | 56 ℃ 45 s | 537 |
Pfcrt-1R | CGGATGTTACAAAACTATAGTTACC | |||
Pfcrt-2F | TGTGCTCATGTGTTTAAACTT | 48 ℃ 45 s | 145 | |
Pfcrt-2R | CAAAACTATAGTTACCAATTTTG | |||
Pfmdr1 | Pfmdr86-1F | TTAAATGTTTACCTGCACAACATAGAAAAT T | 50 ℃ 45 s | 612 |
Pfmdr86-1R | CTCCACAATAACTTGCAACAGTTCTTA | |||
Pfmdr86-2F | TGTATGTGCTGTATTATCAGGA | 50 ℃ 45 s | 526 | |
Pfmdr86-2R | CTCTTCTATAATGGACATGGTA | |||
Pfmdr1246-1F | AATTTGATAGAAAAAGCTATTGATTATAA | 50 ℃ 45 s | 880 | |
Pfmdr1246-1R | TATTTGGTAATGATTCGATAAATTCATC | |||
Pfmdr1246-2F | GAATTATTGTAAATGCAGCTTTA | 50 ℃ 45 s | 799 | |
Pfmdr1246-2R | GCAGCAAACTTACTAACACG | |||
Pfdhfr | Pfdhfr-1F | TTTATGATGGAACAAGTCTGC | 52 ℃ 45 s | 650 |
Pfdhfr-1R | CTAGTATATACATCGCTAACA | |||
Pfdhfr-2F | TGATGGAACAAGTCTGCGACGTT | 46 ℃ 45 s | 594 | |
Pfdhfr-2R | CTGGAAAAAATACATCACATTCATATG | |||
Pfdhps | Pfdhps-1F | GATTCTTTTTCAGATGGAGG | 51 ℃ 45 s | 770 |
Pfdhps-1R | TTCCTCATGTAATTCATCTGA | |||
Pfdhps-2F | AACCTAAACGTGCTGTTCAA | 51 ℃ 45 s | 711 | |
Pfdhps-2R | AATTGTGTGATTTGTCCACAA |
Table 2
Gene mutantion rate of the P. falciparum isolates imported from Equatorial Guinea from 2012 to 2019
基因 Gene | 密码子 Codon | 核苷酸突变 Nucleotide mutation | 氨基酸突变 Amino acid mutation | 血样数 No. sample | 突变率/% Mutantion rate/% | 病例报告年份 Year |
---|---|---|---|---|---|---|
PfK13 | 476a,b | ATA→ATG | M→I | 1 | 1.1(1/91) | 2013 |
481a,c | GCT→GTT | A→V | 1 | 1.1(1/91) | 2019 | |
564a | GCA→GAA | A→E | 1 | 1.1(1/91) | 2013 | |
574a,b | CCT→CTT | P→L | 1 | 1.1(1/91) | 2013 | |
578 | GCT→TCT | A→S | 1 | 1.1(1/91) | 2016 | |
589 | GTC→ATC | V→I | 1 | 1.1(1/91) | 2013 | |
609a | AAT→ATT | N→I | 1 | 1.1(1/91) | 2013 | |
469 | TGC→TGT | C→C | 1 | 1.1(1/91) | 2017 | |
625 | GGA→GGG | G→G | 1 | 1.1(1/91) | 2013 | |
664 | AAT→AAC | N→N | 1 | 1.1(1/91) | 2015 | |
Pfcrt | 074a | ATG→ATT | M→I | 17 | 18.7(17/91) | 2012—2016 |
075a | AAT→GAA | N→E | 17 | 18.7(17/91) | 2012—2016 | |
076a | AAA→ACA | K→T | 17 | 18.7(17/91) | 2012—2016 | |
Pfmdr1 | 086 | AAT→TAT | N→Y | 38 | 41.3(38/92) | 2012—2018 |
184 | TAT→TTT | Y→F | 69 | 75.0(69/92) | 2012—2019 | |
1 246 | GAT→TAT | D→Y | 1 | 1.1(1/92) | 2014 | |
Pfdhfr | 51a | AAT→ATT | N→I | 82 | 91.1(82/90) | 2012—2019 |
59 | TGT→CGT | C→R | 84 | 93.3(84/90) | 2012—2019 | |
108 | AGC→AAC | S→N | 87 | 96.7(87/90) | 2012—2019 | |
Pfdhps | 431a | ATA→GTA | I→V | 8 | 1.1(1/90) | 2013—2016,2018 |
436a | TCT→GCT | S→A | 25 | 27.8(25/90) | 2012—2017 | |
437a | GCT→GGT | A→G | 83 | 92.2(83/90) | 2012—2019 | |
540 | AAA→GAA | K→E | 3 | 3.3(3/90) | 2012,2013,2015 | |
581 | GCG→GGG | A→G | 1 | 1.1(1/90) | 2015 | |
613 | GCC→TCC | A→S | 2 | 2.2(2/90) | 2015 |
Table 3
Genotype distribution of the P. falciparum isolates imported from Equatorial Guinea from 2012 to 2019
基因 Gene | 基因型 Genotype | 血样数(占比/%) No. sample (Proportion/%) | 合计 Total | |||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017—2019 | |||
Pfcrt (n = 91) | C72V73M74N75K76 | 14(87.5) | 18(78.3) | 10(62.5) | 16(84.2) | 8(88.9) | 8(100) | 74(81.3) |
C72V73I74E75T76 | 2(12.5) | 5(21.7) | 6(37.5) | 3(15.8) | 1(11.1) | 0 | 17(18.7) | |
Pfmdr1 (n = 92) | N86Y184D1246 | 3(18.8) | 3(12.5) | 7(43.8) | 5(26.3) | 3(33.3) | 0 | 21(22.8) |
Y86Y184D1246 | 1(6.3) | 0 | 0 | 0 | 0 | 0 | 01(1.1) | |
N86F184D1246 | 2(12.5) | 9(37.5) | 3(18.8) | 9(47.4) | 5(55.6) | 4(50.0) | 32(34.8) | |
N86Y184Y1246 | 0 | 0 | 1(6.3) | 0 | 0 | 0 | 1(1.1) | |
Y86F184D1246 | 10(62.5) | 12(50.0) | 5(31.3) | 5(26.3) | 1(11.1) | 4(50.0) | 37(40.2) | |
Pfdhfr (n = 90) | N51C59S108 | 0 | 1(4.6) | 1(6.3) | 1(5.3) | 0 | 0 | 3(3.3) |
N51C59N108 | 0 | 0 | 2(12.5) | 0 | 0 | 0 | 2(2.2) | |
I51C59N108 | 0 | 0 | 0 | 0 | 1(11.1) | 0 | 1(1.1) | |
N51R59N108 | 2(12.5) | 0 | 0 | 0 | 1(11.1) | 0 | 3(3.3) | |
I51R59N108 | 14(87.5) | 21(95.5) | 13(81.3) | 18(94.7) | 7(77.8) | 8(100) | 81(90.0) | |
Pfdhps (n = 90) | I431S436A437K540A581A613 | 0 | 0 | 2(12.5) | 0 | 0 | 0 | 2(2.2) |
I431A436A437K540A581A613 | 0 | 3(13.6) | 0 | 1(5.3) | 0 | 1(12.5) | 5(5.6) | |
I431S436G437K540A581A613 | 13(81.3) | 13(59.1) | 10(62.5) | 13(68.4) | 5(55.6) | 6(75.0) | 60(66.7) | |
I431A436G437K540A581A613 | 2(12.5) | 4(18.2) | 1(6.3) | 0 | 2(22.2) | 0 | 9(10.0) | |
I431S436G437E540A581A613 | 1(6.3) | 1(4.6) | 0 | 1(5.3) | 0 | 0 | 3(3.3) | |
V431A436G437K540A581A613 | 0 | 1(4.6) | 3(18.8) | 1(5.3) | 2(22.2) | 1(12.5) | 8(8.9) | |
I431A436G437K540G581A613 | 0 | 0 | 0 | 1(5.3) | 0 | 0 | 1(1.1) | |
I431A436G437K540A581S613 | 0 | 0 | 0 | 2(10.5) | 0 | 0 | 2(2.2) |
Table 4
Genotype of the double mutant P. falciparum isolates imported from Equatorial Guinea from 2012 to 2019
基因型 Genotype | 血样数 No. sample | 占比/% Proportion/% |
---|---|---|
I51R59N108- V431A436G437 | 8 | 9.0(8/89) |
I51R59N108- A436G437S613 | 1 | 1.1(1/89) |
I51R59N108- A436G437G581 | 1 | 1.1(1/89) |
I51R59N108- A436G437 | 6 | 6.7(6/89) |
I51R59N108- G437E540 | 3 | 3.4(3/89) |
I51R59N108- G437b | 57 | 64.0(57/89) |
I51R59N108- A436 | 4 | 4.5(4/89) |
R59N108- A436G437 | 2 | 2.2(2/89) |
R59N108- G437 | 1 | 1.1(1/89) |
I51N108- G437 | 1 | 1.1(1/89) |
A436G437S613 | 1 | 1.1(1/89) |
N108 | 2 | 2.2(2/89) |
A436 | 1 | 1.1(1/89) |
G437 | 1 | 1.1(1/89) |
合计 Total | 89 | 100 |
[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022: 22-23. |
[2] | Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) |
(丰俊, 张丽, 夏志贵, 等. 中国消除疟疾:重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | |
[3] | Zhang L, Yi BY, Xia ZG, et al. Epidemiological characteristics of malaria in China, 2021[J]. Chin J Parasitol Parasit Dis, 2022, 40(2): 135-139. (in Chinese) |
(张丽, 易博禹, 夏志贵, 等. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139.) | |
[4] | Zhang L, Yi BY, Yin JH, et al. Epidemiological characteristics of malaria in China, 2022[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 137-141. (in Chinese) |
(张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141.) | |
[5] |
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55.
doi: 10.1038/nature12876 |
[6] |
Ross LS, Dhingra SK, Mok S, et al. Emerging Southeast Asian Pfcrt mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine[J]. Nat Commun, 2018, 9(1): 3314.
doi: 10.1038/s41467-018-05652-0 |
[7] |
Somé AF, Séré YY, Dokomajilar C, et al. Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisinin-piperaquine in Burkina Faso[J]. Antimicrob Agents Chemother, 2010, 54(5): 1949-1954.
doi: 10.1128/AAC.01413-09 |
[8] |
McCollum AM, Poe AC, Hamel M, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles[J]. J Infect Dis, 2006, 194(2): 189-197.
pmid: 16779725 |
[9] |
Vinayak S, Alam MT, Mixson-Hayden T, et al. Origin and evolution of sulfadoxine resistant Plasmodium falciparum[J]. PLoS Pathog, 2010, 6(3): e1000830.
doi: 10.1371/journal.ppat.1000830 |
[10] |
Zhao DY, Zhang HW, Ji PH, et al. Surveillance of antimalarial drug-resistance genes in imported Plasmodium falciparum isolates from Nigeria in Henan, China, 2012—2019[J]. Front Cell Infect Microbiol, 2021, 11: 644576.
doi: 10.3389/fcimb.2021.644576 |
[11] |
Flegg JA, Metcalf CJE, Gharbi M, et al. Trends in antimalarial drug use in Africa[J]. Am J Trop Med Hyg, 2013, 89(5): 857-865.
doi: 10.4269/ajtmh.13-0129 |
[12] |
Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009, 361(5): 455-467.
doi: 10.1056/NEJMoa0808859 |
[13] |
Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014, 371(5): 411-423.
doi: 10.1056/NEJMoa1314981 |
[14] |
Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda[J]. Nat Med, 2020, 26(10): 1602-1608.
doi: 10.1038/s41591-020-1005-2 |
[15] | World Health Organization. Report on antimalarial drug efficacy, resistance and response[R]. Geneva: WHO, 2020: 22-24. |
[16] |
Taylor SM, Parobek CM, DeConti DK, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study[J]. J Infect Dis, 2015, 211(5): 680-688.
doi: 10.1093/infdis/jiu467 pmid: 25180240 |
[17] |
Otienoburu SD, Suay I, Garcia S, et al. An online mapping database of molecular markers of drug resistance in Plasmodium falciparum: the ACT Partner Drug Molecular Surveyor[J]. Malar J, 2019, 18(1): 12.
doi: 10.1186/s12936-019-2645-x |
[18] |
Mwanza S, Joshi S, Nambozi M, et al. The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia[J]. Malar J, 2016, 15(1): 584.
doi: 10.1186/s12936-016-1637-3 |
[19] |
Ndam NT, Basco LK, Ngane VF, et al. Reemergence of chloroquine-sensitive pfcrt K76 Plasmodium falciparum genotype in southeastern Cameroon[J]. Malar J, 2017, 16(1): 130.
doi: 10.1186/s12936-017-1783-2 |
[20] | Nie GK, Xu C, Wei QK, et al. Analysis of drug-resistant gene polymorphisms in Plasmodium falciparum imported from Equatorial Guinea to Shandong Province in 2015 and 2016[J]. Chin J Schisto Control, 2020, 32(6): 612-617. |
(聂广馗, 徐超, 魏庆宽, 等. 2015—2016年山东省由赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国血吸虫病防治杂志, 2020, 32(6): 612-617.) | |
[21] | He JQ, Chen JT, Li JH, et al. Drug-resistant gene polymorphisms in Plasmodium falciparum isolated from Bioko Island, Equatorial Guinea in 2018 and 2019[J]. Chin J Schisto Control, 2021, 33(4): 396-400. |
(何金泉, 陈江涛, 李敬河, 等. 2018—2019年赤道几内亚Bioko岛恶性疟原虫抗药性基因多态性分析[J]. 中国血吸虫病防治杂志, 2021, 33(4): 396-400.) | |
[22] |
Duraisingh MT, Cowman AF. Contribution of the Pfmdr1 gene to antimalarial drug-resistance[J]. Acta Trop, 2005, 94(3): 181-190.
pmid: 15876420 |
[23] |
Gupta H, Macete E, Bulo H, et al. Drug-resistant polymorphisms and copy numbers in Plasmodium falciparum, Mozambique, 2015[J]. Emerg Infect Dis, 2018, 24(1): 40-48.
doi: 10.3201/eid2401.170864 |
[24] |
Berzosa P, Molina de la Fuente I, Ta-Tang TH, et al. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019)[J]. Malar J, 2021, 20(1): 463.
doi: 10.1186/s12936-021-04000-w |
[25] |
Adegbola AJ, Ijarotimi OA, Ubom AE, et al. A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria[J]. Malar J, 2023, 22(1): 71.
doi: 10.1186/s12936-023-04487-5 |
[26] |
Naidoo I, Roper C. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria[J]. Trends Parasitol, 2013, 29(10): 505-515.
doi: 10.1016/j.pt.2013.08.002 |
[27] |
Picot S, Olliaro P, de Monbrison F, et al. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria[J]. Malar J, 2009, 8: 89.
doi: 10.1186/1475-2875-8-89 |
[1] | DING Hongyun, DONG Ying, XU Yanchun, DENG Yan, LIU Yan, WU Jing, CHEN Mengni, ZHANG Canglin. Polymorphism analysis of multidrug resistance protein 1 gene in imported Plasmodium vivax in Yunnan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 404-411. |
[2] | WEI Luanting, LI Runze, GUAN Liangchao, ZHANG Qianyu, LI Cheng, CAO Yaming, ZHAO Yan. Research progress of antimalarial drugs [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 486-491. |
[3] | XU Shaojie, CHEN Shenbo, CHEN Junhu. Research progress on transcription regulation of rif gene in Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 374-379. |
[4] | CHEN Xin-di, WANG Teng-yu, SHI Ya-qin, MAO Xiao-wei, YAN Xu, SU Ya, WEN Hai-feng, WANG Wen-long. Analysis of the expressed lncRNA related to albendazole resistance of Haemonchus contortus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 540-544. |
[5] | TIAN Bin, LIAO Yu, WEN Lan, XIAO Fang, ZHANG Bin, SHEN Xiao-jun. Analysis on the copy number variation of multidrug resistance-1 gene in 122 imported cases of falciparum malaria in Changsha [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 127-131. |
[6] | SHI Ming-li, XIAO Bo, JIANG Lu-bin. Research progress on the expression regulation of var genes in Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 719-724. |
[7] | LI Mei, TU Hong, XIA Zhi-gui, WANG Zhen-yu, ZHOU He-jun. Thermal stability of diagnostic targets Plasmodium falciparum histidine rich protein Ⅱ and Plasmodium lactate dehydrogenase in rapid detection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 245-248. |
[8] | SHI Shan-mei, CHEN Jun-hu. Research progress on the structure and function of RIFIN protein of Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 249-255. |
[9] | ZHANG Cang-lin, NIE Ren-hua, XU Dan, LV Gao-wei, WANG Jian, YANG Ya-ming, DENG Yan, LIU Yan, ZHOU Hong-ning. Correlation of Pfcrt, Pfmdr and PfK13 gene polymorphisms and in vitro drug susceptibility of Plasmodium falciparum isolates from China-Myanmar border region [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 580-588. |
[10] | YE Sheng-yu, CHENG Yi-yi, LI Man, ZHOU Hong-ning. An overview on the resistance of Plasmodium falciparum to primary anti-malarial drugs in China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 631-636. |
[11] | YE Sheng-yu, CHENG Yi-yi, LI Man, ZHOU Hong-ning. Advances in methods for detecting drug-resistance molecular markers of Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 490-495. |
[12] | Yun-shan MOU, Lu-jie LI, Yin-juan WU, Xue-rong LI. Exploration of molecular mechanisms of artemisinin resistance in malaria parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(6): 636-642. |
[13] | Chun LIU, ALFRED Ndoumadiamba, Gou GNONDA Mounzie. Clinical application of colloidal-gold detection reagent for Plasmodium falciparum in Gabon of Africa [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(6): 679-680. |
[14] | Qiang MAO, Fu-quan PEI, Yong-zhen CEN, Meng-ran LIU, Hao ZHANG, Zhuo-hui DENG. Laboratory testing and traceability analysis of a case of transfusion-transmitted falciparum malaria in Guangdong Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(5): 529-533. |
[15] | Zhi-hua WANG, Chun-yan WEI, Heng WANG. Research development on non-coding RNA of Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(4): 409-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||