[1] | Matta SK, Rinkenberger N, Dunay IR, et al. Toxoplasma gondii infection and its implications within the central nervous system[J]. Nat Rev Microbiol, 2021, 19(7): 467-480. | [2] | Lopez Corcino Y, Gonzalez Ferrer S, Mantilla LE, et al. Toxoplasma gondii induces prolonged host epidermal growth factor receptor signalling to prevent parasite elimination by autophagy: perspectives for in vivo control of the parasite[J]. Cell Microbiol, 2019, 21(10): e13084. | [3] | Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741. | [4] | Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy[J]. Nat Cell Biol, 2013, 15(7): 713-720. | [5] | Zhang J, Gao DM, Wang XL. Influence of regulation of host cell autophagy on the proliferation of Toxoplasma gondii in host cells[J]. Acta Universitatis Medicinalis Anhui, 2015, 50(3): 290-293. (in Chinese) | [5] | (张婧, 高冬梅, 汪学龙. 调控宿主细胞自噬对弓形虫在宿主细胞内增殖的影响[J]. 安徽医科大学学报, 2015, 50(3): 290-293.) | [6] | Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, et al. The role of TOR in autophagy regulation from yeast to plants and mammals[J]. Autophagy, 2008, 4(7): 851-865. | [7] | Hale AN, Ledbetter DJ, Gawriluk TR, et al. Autophagy: regulation and role in development[J]. Autophagy, 2013, 9(7): 951-972. | [8] | Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6[J]. Nat Cell Biol, 2013, 15(4): 406-416. | [9] | Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy[J]. Mol Biol Cell, 2009, 20(7): 1981-1991. | [10] | Sasai M, Pradipta A, Yamamoto M. Host immune responses to Toxoplasma gondii[J]. Int Immunol, 2018, 30(3): 113-119. | [11] | Montoya JG, Remington JS. Management of Toxoplasma gondii infection during pregnancy[J]. Clin Infect Dis, 2008, 47(4): 554-566. | [12] | Su HY, Yang SJ, Peng HJ, et al. Current status of toxoplasmosis misdiagnosis in clinic[J]. Chin J Parasitol Parasit Dis, 2019, 37(3): 342-345. (in Chinese) | [12] | (苏海莹, 杨淑君, 彭鸿娟, 等. 弓形虫病临床误诊现状分析[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(3): 342-345.) | [13] | Smith NC, Goulart C, Hayward JA, et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51(2/3): 95-121. | [14] | Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323-335. | [15] | Wang Y, Weiss LM, Orlofsky A. Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth[J]. J Biol Chem, 2009, 284(3): 1694-1701. | [16] | Schmid D, Münz C. Innate and adaptive immunity through autophagy[J]. Immunity, 2007, 27(1): 11-21. | [17] | Muniz-Feliciano L, Van Grol J, Portillo JA, et al. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite[J]. PLoS Pathog, 2013, 9(12): e1003809. | [18] | Van Kooten C, Banchereau J. CD40-CD40 ligand[J]. J Leukoc Biol, 2000, 67(1): 2-17. | [19] | Besteiro S. The role of host autophagy machinery in controlling Toxoplasma infection[J]. Virulence, 2019, 10(1): 438-447. | [20] | Liu E, Lopez Corcino Y, Portillo JA, et al. Identification of signaling pathways by which CD40 stimulates autophagy and antimicrobial activity against Toxoplasma gondii in macrophages[J]. Infect Immun, 2016, 84(9): 2616-2626. | [21] | Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J]. Cell, 2005, 122(6): 927-939. | [22] | Portillo JA, Okenka G, Reed E, et al. The CD40-autophagy pathway is needed for host protection despite IFN-Γ-dependent immunity and CD40 induces autophagy via control of P21 levels[J]. PLoS One, 2010, 5(12): e14472. | [23] | Andrade RM, Wessendarp M, Gubbels MJ, et al. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes[J]. J Clin Invest, 2006, 116(9): 2366-2377. | [24] | Martens S, Parvanova I, Zerrahn J, et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases[J]. PLoS Pathog, 2005, 1(3): e24. | [25] | Ling YM, Shaw MH, Ayala C, et al. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages[J]. J Exp Med, 2006, 203(9): 2063-2071. | [26] | Kim BH, Shenoy AR, Kumar P, et al. IFN-inducible GTPases in host cell defense[J]. Cell Host Microbe, 2012, 12(4): 432-444. | [27] | Howard JC, Hunn JP, Steinfeldt T. The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii[J]. Curr Opin Microbiol, 2011, 14(4): 414-421. | [28] | Kravets E, Degrandi D, Ma Q, et al. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes[J]. Elife, 2016, 5: e11479. | [29] | Zhao Y, Ferguson DJ, Wilson DC, et al. Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages[J]. J Immunol, 2009, 182(6): 3775-3781. | [30] | Khaminets A, Hunn JP, Könen-Waisman S, et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole[J]. Cell Microbiol, 2010, 12(7): 939-961. | [31] | Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010, 8(6): 484-495. | [32] | Reese ML, Shah N, Boothroyd JC. The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases[J]. J Biol Chem, 2014, 289(40): 27849-27858. | [33] | Behnke MS, Fentress SJ, Mashayekhi M, et al. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18[J]. PLoS Pathog, 2012, 8(11): e1002992. | [34] | Portillo JC, Muniz-Feliciano L, Lopez Corcino Y, et al. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy[J]. PLoS Pathog, 2017, 13(10): e1006671. | [35] | Van Grol J, Subauste C, Andrade RM, et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3[J]. PLoS One, 2010, 5(7): e11733. | [36] | Biscardi JS, Maa MC, Tice DA, et al. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function[J]. J Biol Chem, 1999, 274(12): 8335-8343. | [37] | Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity[J]. Mol Cell, 2012, 48(5): 667-680. | [38] | Sobolewska A, Gajewska M, Zarzyńska J, et al. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway[J]. Eur J Cell Biol, 2009, 88(2): 117-130. | [39] | Yan AX, Zou Y, Li JJ, et al. Research advance on molecular mechanism of gliding motility, invasion and egress in Apicomplexa[J]. Chin Trop Med, 2018, 18(9): 950-954. (in Chinese) | [39] | (闫爱霞, 邹洋, 李晶晶, 等. 顶复门原虫运动、入侵和逸出相关分子机制研究进展[J]. 中国热带医学, 2018, 18(9): 950-954.) | [40] | WHO. Malaria Report 2020[R]. Geneva: WHO, 2021. | [41] | Agop-Nersesian C, Niklaus L, Wacker R, et al. Host cell cytosolic immune response during Plasmodium liver stage development[J]. FEMS Microbiol Rev, 2018, 42(3): 324-334. | [42] | Thieleke-Matos C, Lopes Da Silva M, Cabrita-Santos L, et al. Host cell autophagy contributes to Plasmodium liver development[J]. Cell Microbiol, 2016, 18(3): 437-450. | [43] | Schmuckli-Maurer J, Reber V, Wacker R, et al. Inverted recruitment of autophagy proteins to the Plasmodium berghei parasitophorous vacuole membrane[J]. PLoS One, 2017, 12(8): e0183797. | [44] | Prado M, Eickel N, De Niz M, et al. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms[J]. Autophagy, 2015, 11(9): 1561-1579. | [45] | Joy S, Thirunavukkarasu L, Agrawal P, et al. Basal and starvation-induced autophagy mediates parasite survival during intraerythrocytic stages of Plasmodium falciparum[J]. Cell Death Discov, 2018, 4: 43. | [46] | Lin JN, Zhang MY, Lv ZY. Autophagy and parasitic protozoa[J]. J Trop Med, 2017, 17(9): 1258-1262. (in Chinese) | [46] | (林锦娜, 张梦颖, 吕志跃. 自噬与寄生性原虫[J]. 热带医学杂志, 2017, 17(9): 1258-1262.) | [47] | Mueller AK, Labaied M, Kappe SH, et al. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine[J]. Nature, 2005, 433(7022): 164-167. | [48] | Real E, Rodrigues L, Cabal GG, et al. Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes[J]. Nat Microbiol, 2018, 3(1): 17-25. | [49] | Li Z, Zou Y, Jia YG, et al. Current advance of autophagy in Plasmodium and Toxoplasma[J]. Chin Trop Med, 2018, 18(9): 944-949. (in Chinese) | [49] | (李缜, 邹洋, 贾永根, 等. 疟原虫和弓形虫的自噬作用研究进展[J]. 中国热带医学, 2018, 18(9): 944-949.) | [50] | Tomlins AM, Ben-Rached F, Williams RA, et al. Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation[J]. Autophagy, 2013, 9(10): 1540-1552. | [51] | Bouzid M, Hunter PR, Chalmers RM, et al. Cryptosporidium pathogenicity and virulence[J]. Clin Microbiol Rev, 2013, 26(1): 115-134. | [52] | Priyamvada S, Jayawardena D, Bhalala J, et al. Cryptosporidium parvum infection induces autophagy in intestinal epithelial cells[J]. Cell Microbiol, 2020: e13298. | [53] | Blake DP, Worthing K, Jenkins MC. Exploring Eimeria genomes to understand population biology: recent progress and future opportunities[J]. Genes (Basel), 2020, 11(9): 1103. | [54] | Qi N, Liao S, Abuzeid AMI, et al. The effect of autophagy on the survival and invasive activity of Eimeria tenella sporozoites[J]. Sci Rep, 2019, 9(1): 5835. | [55] | Qi N, Liao S, Mohiuddin M, et al. Autophagy induced by monensin serves as a mechanism for programmed death in Eimeria tenella[J]. Vet Parasitol, 2020, 287: 109181. |
|