[1] | Attias M, Teixeira DE, Benchimol M, et al. The life-cycle of Toxoplasma gondii reviewed using animations[J]. Parasit Vectors, 2020, 13(1): 588. | [2] | Dos Santos Pacheco N, Tosetti N, Koreny L, et al. Evolution, composition, assembly, and function of the conoid in apicomplexa[J]. Trends Parasitol, 2020, 36(8): 688-704. | [3] | Leung JM, He Y, Zhang F, et al. Stability and function of a putative microtubule-organizing center in the human parasite Toxoplasma gondii[J]. Mol Biol Cell, 2017, 28(10): 1361-1378. | [4] | Hu K, Roos DS, Murray JM. A novel polymer of tubulin forms the conoid of Toxoplasma gondii[J]. J Cell Biol, 2002, 156(6): 1039-1050. | [5] | Katris NJ, van Dooren GG, McMillan PJ, et al. The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma[J]. PLoS Pathog, 2014, 10(4): e1004074. | [6] | Hu K, Johnson J, Florens L, et al. Cytoskeletal components of an invasion machine: the apical complex of Toxoplasma gondii[J]. PLoS Pathog, 2006, 2(2): e13. | [7] | Harding CR, Gow M, Kang JH, et al. Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii[J]. Nat Commun, 2019, 10(1): 401. | [8] | Tosetti N, Dos Santos Pacheco N, Bertiaux E, et al. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii[J]. Elife, 2020, 9: e56635. | [9] | Back PS, O’Shaughnessy WJ, Moon AS, et al. Ancient MAPK ERK7 is regulated by an unusual inhibitory scaffold required for Toxoplasma apical complex biogenesis[J]. PNAS, 2020, 117(22): 12164-12173. | [10] | Nagayasu E, Hwang YC, Liu J, et al. Loss of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion[J]. Mol Biol Cell, 2017, 28(3): 411-428. | [11] | Leung JM, Nagayasu E, Hwang YC, et al. A doublecortin-domain protein of Toxoplasma and its orthologues bind to and modify the structure and organization of tubulin polymers[J]. BMC Mol Cell Biol, 2020, 21(1): 8. | [12] | Long S, Anthony B, Drewry LL, et al. A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii[J]. Nat Commun, 2017, 8(1): 2236. | [13] | Zhang XH, Ding YY, Ma ZC, et al. Progress on molecular mechanism of Toxoplasma gondii invasion into host cells[J]. Prog Vet Med, 2021, 42(7): 86-90. (in Chinese) | [13] | (张小涵, 丁莹莹, 马知川, 等. 弓形虫入侵宿主分子机制研究进展[J]. 动物医学进展, 2021, 42(7): 86-90.) | [14] | Li RH, Yin GR. Research advances on gliding-associated proteins of Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2016, 34(5): 463-467. (in Chinese) | [14] | (李润花, 殷国荣. 刚地弓形虫滑行相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(5): 463-467.) | [15] | Graindorge A, Frénal K, Jacot D, et al. The conoid associated motor MyoH is indispensable for Toxoplasma gondii entry and exit from host cells[J]. PLoS Pathog, 2016, 12(1): e1005388. | [16] | Polonais V, Javier Foth B, Chinthalapudi K, et al. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii[J]. Traffic, 2011, 12(3): 287-300. | [17] | Yan AX, Zou Y, Li JJ, et al. Research advance on molecular mechanism of gliding motility, invasion and egress in Apicomplexa[J]. China Trop Med, 2018, 18(9): 950-954. (in Chinese) | [17] | (闫爱霞, 邹洋, 李晶晶, 等. 顶复门原虫运动、入侵和逸出相关分子机制研究进展[J]. 中国热带医学, 2018, 18(9): 950-954.) | [18] | Jacot D, Tosetti N, Pires I, et al. An apicomplexan actin-binding protein serves as a connector and lipid sensor to coordinate motility and invasion[J]. Cell Host Microbe, 2016, 20(6): 731-743. | [19] | Tosetti N, Dos Santos Pacheco N, Soldati-Favre D, et al. Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii[J]. Elife, 2019, 8: e42669. | [20] | Sivagurunathan S, Heaslip A, Liu J, et al. Identification of functional modules of AKMT, a novel lysine methyltransferase regulating the motility of Toxoplasma gondii[J]. Mol Biochem Parasitol, 2013, 189(1/2): 43-53. | [21] | Del Carmen MG, Mondragón M, González S, et al. Induction and regulation of conoid extrusion in Toxoplasma gondii[J]. Cell Microbiol, 2009, 11(6): 967-982. | [22] | Monteiro VG, de Melo EJT, Attias M, et al. Morphological changes during conoid extrusion in Toxoplasma gondii tachyzoites treated with calcium ionophore[J]. J Struct Biol, 2001, 136(3): 181-189. | [23] | Garcia CRS, Alves E, Pereira PHS, et al. InsP3 signaling in apicomplexan parasites[J]. Curr Top Med Chem, 2017, 17(19): 2158-2165. | [24] | Munera López J, Ganuza A, Bogado SS, et al. Evaluation of ATM kinase inhibitor KU-55933 as potential anti-Toxoplasma gondii agent[J]. Front Cell Infect Microbiol, 2019, 9: 26. | [25] | Hortua Triana MA, Márquez-Nogueras KM, Vella SA, et al. Calcium signaling and the lytic cycle of the apicomplexan parasite Toxoplasma gondii[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(11 pt b): 1846-1856. | [26] | O’Shaughnessy WJ, Hu X, Beraki T, et al. Loss of a conserved MAPK causes catastrophic failure in assembly of a specialized Cilium-like structure in Toxoplasma gondii[J]. Mol Biol Cell, 2020, 31(9): 881-888. | [27] | Carey KL, Westwood NJ, Mitchison TJ, et al. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii[J]. PNAS, 2004, 101(19): 7433-7438. | [28] | Zhao X, Zhang T, Zhang YW, et al. Research progress on calcium-binding protein in Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2018, 36(5): 525-528. (in Chinese) | [28] | (赵旭, 张婷, 张义伟, 等. 弓形虫钙离子结合蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 525-528.) | [29] | Long S, Wang Q, Sibley LD. Analysis of noncanonical calcium-dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9[J]. Infect Immun, 2016, 84(5): 1262-1273. | [30] | Long SJ, Brown KM, Drewry LL, et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii[J]. PLoS Pathog, 2017, 13(5): e1006379. | [31] | Gao Q, Zhang NZ, Hu LY, et al. Cloning and sequence analysis of C-terminal of Toxoplasma gondii DOC2 gene[J]. China Animal Husb Vet Med, 2014, 41(8): 56-60. (in Chinese) | [31] | (高琦, 张念章, 胡玲英, 等. 弓形虫DOC2基因C-端的克隆及序列分析[J]. 中国畜牧兽医, 2014, 41(8): 56-60.) | [32] | Coleman BI, Saha S, Sato S, et al. A member of the ferlin calcium sensor family is essential for Toxoplasma gondii rhoptry secretion[J]. mBio, 2018, 9(5): e01510-18. |
|