CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (3): 380-385.doi: 10.12140/j.issn.1000-7423.2021.03.014
• REVIEWS • Previous Articles Next Articles
CHEN Yu-ying1,2(), WANG Xiao-ting2, DAI Yang1,2,*(
), CAO Jun1,2
Received:
2020-09-14
Revised:
2020-10-28
Online:
2021-06-30
Published:
2021-07-05
Contact:
DAI Yang
E-mail:18826108801@163.com;15951581011@163.com
Supported by:
CLC Number:
CHEN Yu-ying, WANG Xiao-ting, DAI Yang, CAO Jun. Progress on the intervention of inflammatory conditions by helminthes and their derived molecules[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 380-385.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.03.014
[1] | King CH. Helminthiasis epidemiology and control: scoring successes and meeting the remaining challenges[J]. Adv Parasitol, 2019,103:11-30. |
[2] |
Marques-Rocha JL, Samblas M, Milagro FI, et al. Noncoding RNAs, cytokines, and inflammation-related diseases[J]. FASEB J, 2015,29(9):3595-3611.
doi: 10.1096/fj.14-260323 |
[3] |
Sanya RE, Nkurunungi G, Andia Biraro I, et al. A life without worms[J]. Trans R Soc Trop Med Hyg, 2017,111(1):3-11.
doi: 10.1093/trstmh/trx010 |
[4] |
Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypojournal[J]. Clin Exp Immunol, 2010,160(1):70-79.
doi: 10.1111/j.1365-2249.2010.04133.x |
[5] |
Leone DA, Rees AJ, Kain R. Dendritic cells and routing cargo into exosomes[J]. Immunol Cell Biol, 2018,96(7):683-693.
doi: 10.1111/imcb.2018.96.issue-7 |
[6] |
Finlay CM, Walsh KP, Mills KH. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases[J]. Immunol Rev, 2014,259(1):206-230.
doi: 10.1111/imr.12164 |
[7] |
Flohr C, Tuyen LN, Lewis S, et al. Poor sanitation and helminth infection protect against skin sensitization in vietnamese children: a cross-sectional study[J]. J Allergy Clin Immunol, 2006,118(6):1305-1311.
doi: 10.1016/j.jaci.2006.08.035 |
[8] |
Saunders KA, Raine T, Cooke A, et al. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection[J]. Infect Immun, 2007,75(1):397-407.
pmid: 17043101 |
[9] |
Hartmann S, Schnoeller C, Dahten A, et al. Gastrointestinal nematode infection interferes with experimental allergic airway inflammation but not atopic dermatitis[J]. Clin Exp Allergy, 2009,39(10):1585-1596.
doi: 10.1111/cea.2009.39.issue-10 |
[10] |
Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis[J]. Ann Neurol, 2007,61(2):97-108.
pmid: 17230481 |
[11] |
Summers RW, Elliott DE, Qadir K, et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease[J]. Am J Gastroenterol, 2003,98(9):2034-2041.
pmid: 14499784 |
[12] |
Mulvenna J, Hamilton B, Nagaraj SH, et al. Proteomics analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum[J]. Mol Cell Proteomics, 2009,8(1):109-121.
doi: 10.1074/mcp.M800206-MCP200 |
[13] |
Harnett W. Secretory products of helminth parasites as immunomodulators[J]. Mol Biochem Parasitol, 2014,195(2):130-136.
doi: 10.1016/j.molbiopara.2014.03.007 |
[14] |
Lund ME, O’Brien BA, Hutchinson AT, et al. Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and prevent diabetes in the NOD mouse[J]. PLoS One, 2014,9(1):e86289.
doi: 10.1371/journal.pone.0086289 |
[15] |
Hübner MP, Stocker JT, Mitre E. Inhibition of type 1 diabetes in Filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells[J]. Immunology, 2009,127(4):512-522.
doi: 10.1111/j.1365-2567.2008.02958.x pmid: 19016910 |
[16] |
Ajendra J, Berbudi A, Hoerauf A, et al. Combination of worm antigen and proinsulin prevents type 1 diabetes in NOD mice after the onset of insulitis[J]. Clin Immunol, 2016,164:119-122.
doi: 10.1016/j.clim.2016.02.005 |
[17] |
Tang H, Liang YB, Chen ZB, et al. Soluble egg antigen activates M2 macrophages via the STAT6 and PI3K pathways, and Schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice[J]. J Cell Biochem, 2017,118(12):4230-4239.
doi: 10.1002/jcb.v118.12 |
[18] |
Tang CL, Yu XH, Li Y, et al. Schistosoma japonicum soluble egg antigen protects against type 2 diabetes in Leprdb/db mice by enhancing regulatory T cells and Th2 cytokines[J]. Front Immunol, 2019,10:1471.
doi: 10.3389/fimmu.2019.01471 |
[19] |
Wang LF, Yu ZL, Wan S, et al. Exosomes derived from dendritic cells treated with Schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis[J]. Front Pharmacol, 2017,8:651.
doi: 10.3389/fphar.2017.00651 |
[20] |
Samanta S, Rajasingh S, Drosos N, et al. Exosomes: new molecular targets of diseases[J]. Acta Pharmacol Sin, 2018,39(4):501-513.
doi: 10.1038/aps.2017.162 |
[21] |
Eichenberger RM, Ryan S, Jones L, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice[J]. Front Immunol, 2018,9:850.
doi: 10.3389/fimmu.2018.00850 pmid: 29760697 |
[22] |
Buck AH, Coakley G, Simbari F, et al. Erratum: exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2015,6:8772.
doi: 10.1038/ncomms9772 pmid: 26490107 |
[23] |
Harnett W, Harnett MM, Byron O. Structural/functional aspects of ES-62: a secreted immunomodulatory phosphorylcholine-containing filarial nematode glycoprotein[J]. Curr Protein Pept Sci, 2003,4(1):59-71.
doi: 10.2174/1389203033380368 |
[24] |
Eason RJ, Bell KS, Marshall FA, et al. The helminth product, ES-62 modulates dendritic cell responses by inducing the selective autophagolysosomal degradation of TLR-transducers, as exemplified by PKCδ[J]. Sci Rep, 2016,6:37276.
doi: 10.1038/srep37276 |
[25] |
Coltherd JC, Rodgers DT, Lawrie RE, et al. The parasitic worm-derived immunomodulator, ES-62 and its drug-like small molecule analogues exhibit therapeutic potential in a model of chronic asthma[J]. Sci Rep, 2016,6:19224.
doi: 10.1038/srep19224 |
[26] |
Rodgers DT, Pineda MA, Suckling CJ, et al. Drug-like analogues of the parasitic worm-derived immunomodulator ES-62 are therapeutic in the MRL/Lpr model of systemic lupus erythematosus[J]. Lupus, 2015,24(13):1437-1442.
doi: 10.1177/0961203315591031 pmid: 26085597 |
[27] |
Pineda MA, Eason RJ, Harnett MM, et al. From the worm to the pill, the parasitic worm product ES-62 raises new horizons in the treatment of rheumatoid arthritis[J]. Lupus, 2015,24(4/5):400-411.
doi: 10.1177/0961203314560004 |
[28] |
Pineda MA, Lumb F, Harnett MM, et al. ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae[J]. Mol Biochem Parasitol, 2014,194(1/2):1-8.
doi: 10.1016/j.molbiopara.2014.03.003 |
[29] |
Al-Riyami L, Pineda MA, Rzepecka J, et al. Designing anti-inflammatory drugs from parasitic worms: a synthetic small molecule analogue of the Acanthocheilonema viteae product ES-62 prevents development of collagen-induced arthritis[J]. J Med Chem, 2013,56(24):9982-10002.
doi: 10.1021/jm401251p |
[30] |
Coronado S, Zakzuk J, Regino R, et al. Ascaris lumbricoides cystatin prevents development of allergic airway inflammation in a mouse model[J]. Front Immunol, 2019,10:2280.
doi: 10.3389/fimmu.2019.02280 pmid: 31611876 |
[31] | Yao JX, Fu BQ. Research progress on cystatin of parasitic Nematodes[J]. Chin J Parasitol Parasit Dis, 2012,30(2):146-151. (in Chinese) |
( 姚菊霞, 付宝权. 寄生性线虫半胱氨酸蛋白酶抑制剂研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012,30(2):146-151.) | |
[32] | Bisht N, Khatri V, Chauhan N, et al. Cystatin from filarial parasites suppress the clinical symptoms and pathology of experimentally induced colitis in mice by inducing T-regulatory cells, B1-cells, and alternatively activated macrophages[J]. Biomedicines, 2019,7(4):E85. |
[33] |
Klotz C, Ziegler T, Figueiredo AS, et al. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages[J]. PLoS Pathog, 2011,7(1):e1001248.
doi: 10.1371/journal.ppat.1001248 |
[34] |
Schuijs MJ, Hartmann S, Selkirk ME, et al. The helminth-derived immunomodulator AvCystatin reduces virus enhanced inflammation by induction of regulatory IL-10+ T cells[J]. PLoS One, 2016,11(8):e0161885.
doi: 10.1371/journal.pone.0161885 |
[35] |
Zhan B, Gupta R, Wong SP, et al. Molecular cloning and characterization of Ac-TMP-2, a tissue inhibitor of metalloproteinase secreted by adult Ancylostoma caninum[J]. Mol Biochem Parasitol, 2008,162(2):142-148.
doi: 10.1016/j.molbiopara.2008.08.008 |
[36] | Navarro S, Pickering DA, Ferreira IB, et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma[J]. Sci Transl Med, 2016,8(362):362ra143. |
[37] |
Driss V, El Nady M, Delbeke M, et al. The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils[J]. Mucosal Immunol, 2016,9(2):322-335.
doi: 10.1038/mi.2015.62 pmid: 26174763 |
[38] |
Hervé M, Angeli V, Pinzar E, et al. Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion[J]. Eur J Immunol, 2003,33(10):2764-2772.
doi: 10.1002/(ISSN)1521-4141 |
[39] |
Riveau G, Deplanque D, Remoué F, et al. Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis[J]. PLoS Negl Trop Dis, 2012,6(7):e1704.
doi: 10.1371/journal.pntd.0001704 |
[40] | Capron M, Béghin L, Leclercq C, et al. Safety of P28GST, a protein derived from a schistosome helminth parasite, in patients with Crohn’s disease: a pilot study (ACROHNEM)[J]. J Clin Med, 2019,9(1):E41. |
[41] |
Shen J, Wang LF, Peng M, et al. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model[J]. Parasit Vectors, 2019,12(1):457.
doi: 10.1186/s13071-019-3697-z |
[42] |
Sun X, Liu YH, Lv ZY, et al. rSj16, a recombinant protein of Schistosoma japonicum-derived molecule, reduces severity of the complete Freund’s adjuvant-induced adjuvant arthritis in rats’ model[J]. Parasite Immunol, 2010,32(11/12):739-748.
doi: 10.1111/pim.2010.32.issue-11-12 |
[43] |
Wang L, Xie H, Xu L, et al. rSj16 protects against DSS-induced colitis by inhibiting the PPAR-α signaling pathway[J]. Theranostics, 2017,7(14):3446-3460.
doi: 10.7150/thno.20359 |
[44] | de Los Reyes Jiménez M, Lechner A, Alessandrini F, et al. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products[J]. Sci Transl Med, 2020,12(540):eaay0605. |
[45] |
Everts B, Hussaarts L, Driessen NN, et al. Schistosome-derived Omega-1 drives Th2 polarization by suppressing protein synjournal following internalization by the mannose receptor[J]. J Exp Med, 2012,209(10):1753-1767.
doi: 10.1084/jem.20111381 |
[46] |
Hams E, Bermingham R, Wurlod FA, et al. The helminth T2 RNase ω1 promotes metabolic homeostasis in an IL-33- and group 2 innate lymphoid cell-dependent mechanism[J]. FASEB J, 2016,30(2):824-835.
doi: 10.1096/fsb2.v30.2 |
[47] |
Knuhr K, Langhans K, Nyenhuis S, et al. Schistosoma mansoni egg-released IPSE/alpha-1 dampens inflammatory cytokine responses via basophil interleukin (IL)-4 and IL-13[J]. Front Immunol, 2018,9:2293.
doi: 10.3389/fimmu.2018.02293 |
[48] |
Mbanefo EC, Le L, Zee R, et al. IPSE, a urogenital parasite-derived immunomodulatory protein, ameliorates ifosfamide-induced hemorrhagic cystitis through downregulation of pro-inflammatory pathways[J]. Sci Rep, 2019,9(1):1586.
doi: 10.1038/s41598-018-38274-z |
[49] |
Robinson MW, Donnelly S, Hutchinson AT, et al. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides[J]. PLoS Pathog, 2011,7(5):e1002042.
doi: 10.1371/journal.ppat.1002042 |
[50] |
Crowe J, Lumb FE, Harnett MM, et al. Parasite excretory-secretory products and their effects on metabolic syndrome[J]. Parasite Immunol, 2017,39(5):e12410.
doi: 10.1111/pim.2017.39.issue-5 |
[51] |
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity[J]. Mucosal Immunol, 2018,11(4):1039-1046.
doi: 10.1038/s41385-018-0008-5 pmid: 29453411 |
[52] |
Zaiss MM, Rapin A, Lebon L, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation[J]. Immunity, 2015,43(5):998-1010.
doi: 10.1016/j.immuni.2015.09.012 |
[1] | LI Wenjie, FENG Meng, CHENG Xunjia. Research advances of the immune regulation of helminths and their derived molecules on mite-induced asthma [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 131-136. |
[2] | LI Chang, DU Xinyue, YAN Min, WANG Zhaojun. Research advances on the role and mechanism of neutrophil extracellular traps in parasitic infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 219-222. |
[3] | MA Hui, CHONG Shigui, CHEN Gen, ZHANG Linghui, QIN Junmei, ZHAO Yumin. Research progress on the cellular signal pathways associated in alveolar echinococcosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 223-227. |
[4] | CHEN Zhe, GE Jun, JIANG Weisheng, QIU Tingting, WEN Qi, ZENG Xiaojun. Epidemiological trends of soil-transmitted nematode infections in Jiangxi Province, 2015—2021 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 59-67. |
[5] | ZHANG Jing-xiao, SHI Ke-mei, LIU Yu-fang, ZHAO Cun-zhe, ZHAN Pei-zhen, WANG Wei, LIU Jia, LIU Na, LEI Wen, ZHANG Qing, ZHANG Xiong-ying, MA Xiao, CAI Hui-xia, MA Jun-ying. Surveillance on soil-transmitted helminth infection in residents in Qinghai Province during 2016—2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 737-741. |
[6] | JIANG Tian-tian, JI Peng-hui, HE Zhi-quan, CHEN Wei-qi, ZHANG Ya-lan, DENG Yan, WANG Dan, ZHOU Rui-min, LIU Ying, ZHANG Hong-wei. Analysis of surveillance on soil-transmitted helminth infection in Henan Province from 2016 to 2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 742-747. |
[7] | CHEN Guo, ZHU Dan-dan, DUAN Yi-nong. Research progress of immune regulation protein B7 family on immune regulation during Schistosoma japonicum infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 774-779. |
[8] | PAN Xiao-wen, WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong. Research advances on exosome and its functions to parasitic helminths [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 390-395. |
[9] | YU Wei-jun, WANG Zi-jiang, WANG Bo, MAO Ling-ling, WU Qi-jun, YAO Wen-qing, SUN Ying-wei. Surveillance and trends of soil-transmitted helminth infections in Liaoning Province, 2016—2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 211-215. |
[10] | HE Wei, ZHOU Bi-ying. Research progress on signal pathways related to host T cell immune response in helminth infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 223-227. |
[11] | HU Yue, LV Zhi-yue. Application of metabolomics in research of medical helminths [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 703-709. |
[12] | HE Zhan-ying, WANG Xiao-mei, WU Wen-ting, LI Xu, REN Hai-lin, LI Xin-yu. Surveillance and analysis of important human parasitic infections in Beijing during 2016—2020 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 557-561. |
[13] | LIU Bing, WANG Qi, HE Yong-jun, HE Ping. Research progress on immune regulation of medical protozoa-related proteins [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(1): 112-119. |
[14] | CHEN Zhe, JIANG Wei-sheng, LI Dong, GE Jun, DAI Kun-jiao, ZENG Xiao-jun, ZHU Ting-jun. Analysis of soil-transmitted helminth infection in populations in national surveillance sites of Jiangxi Province during 2016-2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 534-541. |
[15] | ZENG Xiao-jun, JIANG Wei-sheng, GE Jun, XIE Shu-ying, LI Zhao-jun, HANG Chun-qin, LI Dong. Comparison of status of soil-transmitted helminth infection between poverty and non-poverty areas in Jiangxi Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 548-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||