CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (6): 826-831.doi: 10.12140/j.issn.1000-7423.2021.06.015
• REVIEWS • Previous Articles Next Articles
LU Fei(), ZHUO Xun-hui, LU Shao-hong*(
)
Received:
2021-05-24
Revised:
2021-08-09
Online:
2021-12-30
Published:
2021-12-13
Contact:
LU Shao-hong
E-mail:836685633@qq.com;lsh@zjams.com.cn
Supported by:
CLC Number:
LU Fei, ZHUO Xun-hui, LU Shao-hong. Research progress on the interaction between host cell autophagy and apicomplexa protozoa infection[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 826-831.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.06.015
[1] |
Matta SK, Rinkenberger N, Dunay IR, et al. Toxoplasma gondii infection and its implications within the central nervous system[J]. Nat Rev Microbiol, 2021, 19(7): 467-480.
doi: 10.1038/s41579-021-00518-7 |
[2] | Lopez Corcino Y, Gonzalez Ferrer S, Mantilla LE, et al. Toxoplasma gondii induces prolonged host epidermal growth factor receptor signalling to prevent parasite elimination by autophagy: perspectives for in vivo control of the parasite[J]. Cell Microbiol, 2019, 21(10): e13084. |
[3] |
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741.
doi: 10.1016/j.cell.2011.10.026 pmid: 22078875 |
[4] |
Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy[J]. Nat Cell Biol, 2013, 15(7): 713-720.
doi: 10.1038/ncb2788 |
[5] | Zhang J, Gao DM, Wang XL. Influence of regulation of host cell autophagy on the proliferation of Toxoplasma gondii in host cells[J]. Acta Universitatis Medicinalis Anhui, 2015, 50(3): 290-293. (in Chinese) |
(张婧, 高冬梅, 汪学龙. 调控宿主细胞自噬对弓形虫在宿主细胞内增殖的影响[J]. 安徽医科大学学报, 2015, 50(3): 290-293.) | |
[6] |
Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, et al. The role of TOR in autophagy regulation from yeast to plants and mammals[J]. Autophagy, 2008, 4(7): 851-865.
pmid: 18670193 |
[7] |
Hale AN, Ledbetter DJ, Gawriluk TR, et al. Autophagy: regulation and role in development[J]. Autophagy, 2013, 9(7): 951-972.
doi: 10.4161/auto.24273 |
[8] |
Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6[J]. Nat Cell Biol, 2013, 15(4): 406-416.
doi: 10.1038/ncb2708 |
[9] |
Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy[J]. Mol Biol Cell, 2009, 20(7): 1981-1991.
doi: 10.1091/mbc.E08-12-1248 pmid: 19211835 |
[10] |
Sasai M, Pradipta A, Yamamoto M. Host immune responses to Toxoplasma gondii[J]. Int Immunol, 2018, 30(3): 113-119.
doi: 10.1093/intimm/dxy004 pmid: 29408976 |
[11] |
Montoya JG, Remington JS. Management of Toxoplasma gondii infection during pregnancy[J]. Clin Infect Dis, 2008, 47(4): 554-566.
doi: 10.1086/590149 pmid: 18624630 |
[12] | Su HY, Yang SJ, Peng HJ, et al. Current status of toxoplasmosis misdiagnosis in clinic[J]. Chin J Parasitol Parasit Dis, 2019, 37(3): 342-345. (in Chinese) |
(苏海莹, 杨淑君, 彭鸿娟, 等. 弓形虫病临床误诊现状分析[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(3): 342-345.) | |
[13] |
Smith NC, Goulart C, Hayward JA, et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51(2/3): 95-121.
doi: 10.1016/j.ijpara.2020.11.001 |
[14] |
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323-335.
doi: 10.1038/nature09782 |
[15] |
Wang Y, Weiss LM, Orlofsky A. Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth[J]. J Biol Chem, 2009, 284(3): 1694-1701.
doi: 10.1074/jbc.M807890200 |
[16] |
Schmid D, Münz C. Innate and adaptive immunity through autophagy[J]. Immunity, 2007, 27(1): 11-21.
doi: 10.1016/j.immuni.2007.07.004 |
[17] |
Muniz-Feliciano L, Van Grol J, Portillo JA, et al. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite[J]. PLoS Pathog, 2013, 9(12): e1003809.
doi: 10.1371/journal.ppat.1003809 |
[18] |
Van Kooten C, Banchereau J. CD40-CD40 ligand[J]. J Leukoc Biol, 2000, 67(1): 2-17.
doi: 10.1002/jlb.2000.67.issue-1 |
[19] |
Besteiro S. The role of host autophagy machinery in controlling Toxoplasma infection[J]. Virulence, 2019, 10(1): 438-447.
doi: 10.1080/21505594.2018.1518102 |
[20] |
Liu E, Lopez Corcino Y, Portillo JA, et al. Identification of signaling pathways by which CD40 stimulates autophagy and antimicrobial activity against Toxoplasma gondii in macrophages[J]. Infect Immun, 2016, 84(9): 2616-2626.
doi: 10.1128/IAI.00101-16 |
[21] |
Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J]. Cell, 2005, 122(6): 927-939.
pmid: 16179260 |
[22] |
Portillo JA, Okenka G, Reed E, et al. The CD40-autophagy pathway is needed for host protection despite IFN-Γ-dependent immunity and CD40 induces autophagy via control of P21 levels[J]. PLoS One, 2010, 5(12): e14472.
doi: 10.1371/journal.pone.0014472 |
[23] |
Andrade RM, Wessendarp M, Gubbels MJ, et al. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes[J]. J Clin Invest, 2006, 116(9): 2366-2377.
pmid: 16955139 |
[24] |
Martens S, Parvanova I, Zerrahn J, et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases[J]. PLoS Pathog, 2005, 1(3): e24.
doi: 10.1371/journal.ppat.0010024 |
[25] |
Ling YM, Shaw MH, Ayala C, et al. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages[J]. J Exp Med, 2006, 203(9): 2063-2071.
doi: 10.1084/jem.20061318 |
[26] |
Kim BH, Shenoy AR, Kumar P, et al. IFN-inducible GTPases in host cell defense[J]. Cell Host Microbe, 2012, 12(4): 432-444.
doi: 10.1016/j.chom.2012.09.007 |
[27] |
Howard JC, Hunn JP, Steinfeldt T. The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii[J]. Curr Opin Microbiol, 2011, 14(4): 414-421.
doi: 10.1016/j.mib.2011.07.002 |
[28] |
Kravets E, Degrandi D, Ma Q, et al. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes[J]. Elife, 2016, 5: e11479.
doi: 10.7554/eLife.11479 |
[29] |
Zhao Y, Ferguson DJ, Wilson DC, et al. Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages[J]. J Immunol, 2009, 182(6): 3775-3781.
doi: 10.4049/jimmunol.0804190 |
[30] |
Khaminets A, Hunn JP, Könen-Waisman S, et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole[J]. Cell Microbiol, 2010, 12(7): 939-961.
doi: 10.1111/cmi.2010.12.issue-7 |
[31] |
Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010, 8(6): 484-495.
doi: 10.1016/j.chom.2010.11.005 pmid: 21147463 |
[32] |
Reese ML, Shah N, Boothroyd JC. The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases[J]. J Biol Chem, 2014, 289(40): 27849-27858.
doi: 10.1074/jbc.M114.567057 |
[33] |
Behnke MS, Fentress SJ, Mashayekhi M, et al. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18[J]. PLoS Pathog, 2012, 8(11): e1002992.
doi: 10.1371/journal.ppat.1002992 |
[34] |
Portillo JC, Muniz-Feliciano L, Lopez Corcino Y, et al. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy[J]. PLoS Pathog, 2017, 13(10): e1006671.
doi: 10.1371/journal.ppat.1006671 |
[35] |
Van Grol J, Subauste C, Andrade RM, et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3[J]. PLoS One, 2010, 5(7): e11733.
doi: 10.1371/journal.pone.0011733 |
[36] |
Biscardi JS, Maa MC, Tice DA, et al. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function[J]. J Biol Chem, 1999, 274(12): 8335-8343.
pmid: 10075741 |
[37] |
Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity[J]. Mol Cell, 2012, 48(5): 667-680.
doi: 10.1016/j.molcel.2012.09.013 |
[38] |
Sobolewska A, Gajewska M, Zarzyńska J, et al. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway[J]. Eur J Cell Biol, 2009, 88(2): 117-130.
doi: 10.1016/j.ejcb.2008.09.004 pmid: 19013662 |
[39] | Yan AX, Zou Y, Li JJ, et al. Research advance on molecular mechanism of gliding motility, invasion and egress in Apicomplexa[J]. Chin Trop Med, 2018, 18(9): 950-954. (in Chinese) |
(闫爱霞, 邹洋, 李晶晶, 等. 顶复门原虫运动、入侵和逸出相关分子机制研究进展[J]. 中国热带医学, 2018, 18(9): 950-954.) | |
[40] | WHO. Malaria Report 2020[R]. Geneva: WHO, 2021. |
[41] |
Agop-Nersesian C, Niklaus L, Wacker R, et al. Host cell cytosolic immune response during Plasmodium liver stage development[J]. FEMS Microbiol Rev, 2018, 42(3): 324-334.
doi: 10.1093/femsre/fuy007 pmid: 29529207 |
[42] |
Thieleke-Matos C, Lopes Da Silva M, Cabrita-Santos L, et al. Host cell autophagy contributes to Plasmodium liver development[J]. Cell Microbiol, 2016, 18(3): 437-450.
doi: 10.1111/cmi.12524 pmid: 26399761 |
[43] |
Schmuckli-Maurer J, Reber V, Wacker R, et al. Inverted recruitment of autophagy proteins to the Plasmodium berghei parasitophorous vacuole membrane[J]. PLoS One, 2017, 12(8): e0183797.
doi: 10.1371/journal.pone.0183797 |
[44] |
Prado M, Eickel N, De Niz M, et al. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms[J]. Autophagy, 2015, 11(9): 1561-1579.
doi: 10.1080/15548627.2015.1067361 |
[45] | Joy S, Thirunavukkarasu L, Agrawal P, et al. Basal and starvation-induced autophagy mediates parasite survival during intraerythrocytic stages of Plasmodium falciparum[J]. Cell Death Discov, 2018, 4: 43. |
[46] | Lin JN, Zhang MY, Lv ZY. Autophagy and parasitic protozoa[J]. J Trop Med, 2017, 17(9): 1258-1262. (in Chinese) |
(林锦娜, 张梦颖, 吕志跃. 自噬与寄生性原虫[J]. 热带医学杂志, 2017, 17(9): 1258-1262.) | |
[47] |
Mueller AK, Labaied M, Kappe SH, et al. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine[J]. Nature, 2005, 433(7022): 164-167.
doi: 10.1038/nature03188 |
[48] |
Real E, Rodrigues L, Cabal GG, et al. Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes[J]. Nat Microbiol, 2018, 3(1): 17-25.
doi: 10.1038/s41564-017-0054-x |
[49] | Li Z, Zou Y, Jia YG, et al. Current advance of autophagy in Plasmodium and Toxoplasma[J]. Chin Trop Med, 2018, 18(9): 944-949. (in Chinese) |
(李缜, 邹洋, 贾永根, 等. 疟原虫和弓形虫的自噬作用研究进展[J]. 中国热带医学, 2018, 18(9): 944-949.) | |
[50] |
Tomlins AM, Ben-Rached F, Williams RA, et al. Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation[J]. Autophagy, 2013, 9(10): 1540-1552.
doi: 10.4161/auto.25832 pmid: 24025672 |
[51] |
Bouzid M, Hunter PR, Chalmers RM, et al. Cryptosporidium pathogenicity and virulence[J]. Clin Microbiol Rev, 2013, 26(1): 115-134.
doi: 10.1128/CMR.00076-12 pmid: 23297262 |
[52] | Priyamvada S, Jayawardena D, Bhalala J, et al. Cryptosporidium parvum infection induces autophagy in intestinal epithelial cells[J]. Cell Microbiol, 2020: e13298. |
[53] |
Blake DP, Worthing K, Jenkins MC. Exploring Eimeria genomes to understand population biology: recent progress and future opportunities[J]. Genes (Basel), 2020, 11(9): 1103.
doi: 10.3390/genes11091103 |
[54] |
Qi N, Liao S, Abuzeid AMI, et al. The effect of autophagy on the survival and invasive activity of Eimeria tenella sporozoites[J]. Sci Rep, 2019, 9(1): 5835.
doi: 10.1038/s41598-019-41947-y |
[55] |
Qi N, Liao S, Mohiuddin M, et al. Autophagy induced by monensin serves as a mechanism for programmed death in Eimeria tenella[J]. Vet Parasitol, 2020, 287: 109181.
doi: 10.1016/j.vetpar.2020.109181 |
[1] | LI Jia-ming, WANG Yi-xuan, YANG Ning-ai, MA Hui-hui, LAN Min, LIU Chun-lan, ZHAO Zhi-jun. Effects of ROP16 protein of Toxoplasma gondii on polarization and apoptosis of MH-S cells and their related mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 579-586. |
[2] | ZOU Wei-hao, WU Wei-ling, LIAO Yuan-peng, CHEN Min, PENG Hong-juan. Preparation and application of monoclonal antibody against Toxoplasma gondii bradyzoite antigen 1 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 587-593. |
[3] | DAI Li-sha, ZHANG Li-xin, YIN Kun. Research advances in Toxoplasma gondii induced host mental-behavioural disorders [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 642-646. |
[4] | WANG Jie, WEN Hong-yang, CHEN Ying, AN Ran, LUO Qing-li, SHEN Ji-long, DU Jian. Construction and identification of macrophage migration inhibitory factor gene knockout strain of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 349-354. |
[5] | GE Jie-yun, LIU Lei, SUN Yi-fan, CHENG Yang. Advances in research on the vacuolar membrane function and the associated proteins of plasmodium parasitophorous vacuole [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 402-410. |
[6] | WANG Zhen-xun, XIONG Si-si, SUN Xia-hui, WANG Yong-liang, PAN Ge, HE Shen-yi, CONG Hua. Differential expression and action mechanism of lncRNA102796 in the brain of mice with chronic infection of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 187-193. |
[7] | JIANG Feng, CHEN Run, DU Ning-ning, ZHU Meng-yi, ZHONG Hao, CHEN Hui, XI Xu-xia, ZHAN Xiao-dong, LI Chao-pin. Investigation of Toxoplasma gondii infection in pet dogs and cats in Wuhu City [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 124-126. |
[8] | SHAO Han, LI Si-yuan, LI Jun. The affect of metformin on autophagy and apoptosis of Echinococcus multilocularis cysts and protoscoleces [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 43-49. |
[9] | ZHANG Xiao-han, FENG Ying, CHEN Ran, SANG Xiao-yu, YANG Na. Advances in research of structure, function and regulatory mechanism of Toxoplasma gondii conoid [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 832-835. |
[10] | WANG Long-jiang, LI Jin, YIN Kun, XU Chao, LIU Gong-zhen, HUANG Bing-cheng, WEI Qing-kuan, SUN Hui. Comparative analysis of transcriptomes in Toxoplasma gondii before and after invasion in human foreskin fibroblasts [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 480-486. |
[11] | LIAO Wen-zhong, XU Li-qing, YAO Li-jie, CHEN Min, PENG Hong-juan. Characterization of ubiquitinated protein profile change in host cells caused by Toxoplasma gondii infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 487-493. |
[12] | ZHANG Li-xin, ZHAO Gui-hua, XU Chao, XIAO Ting, SUN Hui, LI Jin, LIU Gong-zhen, YIN Kun. Construction of an infection model of Toxoplasma gondii RH tachyzoite invasion to mouse macrophage cell line in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 494-501. |
[13] | HOU Yong-heng, LV Fang-li. The interplay between Toxoplasma gondii infection and autophagy in host cells [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 537-542. |
[14] | HUANG Zi-yun, LV Fang-li. Solid organ transplantation and toxoplasmosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 386-392. |
[15] | LI Mei, TU Hong, XIA Zhi-gui, WANG Zhen-yu, ZHOU He-jun. Thermal stability of diagnostic targets Plasmodium falciparum histidine rich protein Ⅱ and Plasmodium lactate dehydrogenase in rapid detection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 245-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||