CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (4): 487-493.doi: 10.12140/j.issn.1000-7423.2021.04.011
• ORIGINAL ARTICLES • Previous Articles Next Articles
LIAO Wen-zhong(), XU Li-qing, YAO Li-jie, CHEN Min, PENG Hong-juan*(
)
Received:
2021-01-22
Revised:
2021-02-24
Online:
2021-08-30
Published:
2021-06-18
Contact:
PENG Hong-juan
E-mail:littlezissy@163.com;hongjuan@smu.edu.cn
Supported by:
CLC Number:
LIAO Wen-zhong, XU Li-qing, YAO Li-jie, CHEN Min, PENG Hong-juan. Characterization of ubiquitinated protein profile change in host cells caused by Toxoplasma gondii infection[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 487-493.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.04.011
Table 1
Gene Ontology (GO)enrichment of differentially ubiquitinated proteins in RH and ME49 infection groups
本体 Ontology | RH感染组RH infection group | ME49感染组ME49 infection group | |||
---|---|---|---|---|---|
GO 项 GO terms | 基因数量 Gene count | GO 项 GO terms | 基因数量 Gene count | ||
细胞组分 Cellular component | 细胞质 Cytoplasm | 77 | 胞质溶胶 Cytosol | 16 | |
胞质溶胶 Cytosol | 60 | 细胞外泌体 Extracellular exosome | 15 | ||
细胞膜Membrane | 57 | 细胞膜Membrane | 9 | ||
细胞外泌体 Extracellular exosome | 56 | 黏着斑 Focal adhesion | 5 | ||
线粒体 Mitochondrion | 24 | 核糖体 Ribosome | 4 | ||
内质网 Endoplasmic reticulum | 19 | 片状脂质体 Lamellipodium | 3 | ||
细胞核 Nucleolus | 17 | 丝状肌动蛋白 Filamentous actin | 2 | ||
黏着斑 Focal adhesion | 14 | ||||
内质网膜 Endoplasmic reticulum membrane | 14 | ||||
高尔基体膜 Golgi membrane | 13 | ||||
生物进程 Biological process | 翻译 Translation | 15 | 翻译 Translation | 4 | |
病毒过程 Viral process | 14 | 肝配蛋白受体传导途径 Ephrin receptor signaling pathway | 3 | ||
SRP依赖的共翻译蛋白靶向膜 SRP-dependent cotranslational protein targeting to membrane | 13 | SRP依赖的共翻译蛋白靶向膜 SRP-dependent cotranslational protein targeting to membrane | 3 | ||
细胞内蛋白质 Intracellular protein transport | 13 | 病毒转录 Viral transcription | 3 | ||
病毒转录 Viral transcription | 12 | 核转录的mRNA分解过程, 无意义介导的衰变 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay | 3 | ||
翻译起始 Translational initiation | 12 | 翻译起始 Translational initiation | 3 | ||
rRNA加工 rRNA processing | 12 | rRNA加工 rRNA processing | 3 | ||
核转录的mRNA分解过程,无意义介导的衰变 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay | 11 | 网格蛋白介导的内吞作用 Clathrin-mediated endocytosis | 2 | ||
细胞分裂 Cell division | 9 | 细胞质翻译 Cytoplasmic translation | 2 | ||
细胞连接 Cell-cell adhesion | 8 | 细胞对葡萄糖饥饿的反应 Cellular response to glucose starvation | 2 | ||
分子功能 Molecular function | 蛋白质结合 Protein binding | 108 | 蛋白质结合 Protein binding | 20 | |
poly(A) RNA结合 poly(A) RNA binding | 32 | 核糖体的结构成分 Structural constituent of ribosome | 4 | ||
ATP结合 ATP binding | 26 | 肌动蛋白丝结合Actin filament binding | 3 | ||
RNA结合 RNA binding | 15 | ||||
核糖体的结构成分 Structural constituent of ribosome | 14 | ||||
泛素蛋白连接酶结合 Ubiquitin protein ligase binding | 11 | ||||
钙黏着蛋白结合参与细胞间黏附 Cadherin binding involved in cell-cell adhesion | 8 | ||||
GTP结合 GTP binding | 8 | ||||
蛋白质结构域特异性结合 Protein domain specific binding | 7 | ||||
GTP酶活性 GTPase activity | 7 |
[1] |
Dubey JP. The history of Toxoplasma gondii: the first 100 years[J]. J Eukaryot Microbiol, 2008, 55(6):467-475.
doi: 10.1111/jeu.2008.55.issue-6 |
[2] |
Montoya J, Liesenfeld O. Toxoplasmosis[J]. Lancet, 2004, 363(9425):1965-1976.
pmid: 15194258 |
[3] |
Hakimi MA, Olias P, Sibley LD. Toxoplasma effectors targeting host signaling and transcription[J]. Clin Microbiol Rev, 2017, 30(3):615-645.
doi: 10.1128/CMR.00005-17 |
[4] | Xia J, Peng HJ. Research advances on Toxoplasma gondii virulence mediating factors[J]. Chin J Parasitol Parasit Dis, 2015, 33(4):297-300. (in Chinese) |
(夏菁, 彭鸿娟. 刚地弓形虫毒力调节因子研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4):297-300.) | |
[5] |
Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains[J]. Nat Struct Mol Biol, 2011, 18(5):520-528.
doi: 10.1038/nsmb.2066 |
[6] |
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks[J]. Nat Rev Mol Cell Biol, 2011, 12(5):295-307.
doi: 10.1038/nrm3099 |
[7] | Yao LJ, Peng HJ. Research advances on the inhibition of interferon-γ-dependent cellular immunity by Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2017, 35(5):503-508. (in Chinese) |
(姚礼捷, 彭鸿娟. 弓形虫抑制γ干扰素依赖的宿主细胞免疫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5):503-508.) | |
[8] |
Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6):924-935.
doi: 10.1016/j.immuni.2014.05.006 |
[9] |
Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41):E5628-E5637.
doi: 10.1073/pnas.1515966112 |
[10] |
Steinfeldt T, Könen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8(12):e1000576.
doi: 10.1371/journal.pbio.1000576 |
[11] |
Lee Y, Sasai MW, Ma JS, et al. p62 plays a specific role in interferon-γ-induced presentation of a Toxoplasma vacuolar antigen[J]. Cell Rep, 2015, 13(2):223-233.
doi: 10.1016/j.celrep.2015.09.005 |
[12] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. mBio, 2015, 6(5):e01157-e01172. |
[13] |
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions[J]. Cell Mol Immunol, 2016, 13(5):560-576.
doi: 10.1038/cmi.2016.40 |
[14] |
Mesquita FS, Thomas M, Sachse M, et al. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates[J]. PLoS Pathog, 2012, 8(6):e1002743.
doi: 10.1371/journal.ppat.1002743 |
[15] |
Fiskin E, Bionda T, Dikic I, et al. Global analysis of host and bacterial ubiquitinome in response to Salmonella typhimurium infection[J]. Mol Cell, 2016, 62(6):967-981.
doi: 10.1016/j.molcel.2016.04.015 |
[16] |
Nelson MM, Jones AR, Carmen JC, et al. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii[J]. Infect Immun, 2008, 76(2):828-844.
pmid: 17967855 |
[17] | He JJ, Ma J, Wang JL, et al. iTRAQ-based quantitative proteomics analysis identifies host pathways modulated during Toxoplasma gondii infection in swine[J]. Microorganisms, 2020, 8(4):E518. |
[18] | Delorme-Walker V, Abrivard M, Lagal V, et al. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion[J]. J Cell Sci, 2012, 125(18):4333-4342. |
[19] |
Sweeney KR, Morrissette NS, LaChapelle S, et al. Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton[J]. Eukaryot Cell, 2010, 9(11):1680-1689.
doi: 10.1128/EC.00079-10 |
[20] |
He C, Kong L, Zhou LJ, et al. Host cell vimentin restrains Toxoplasma gondii invasion and phosphorylation of vimentin is partially regulated by interaction with TgROP18[J]. Int J Biol Sci, 2017, 13(9):1126-1137.
doi: 10.7150/ijbs.21247 |
[21] |
Na RH, Zhu GH, Luo JX, et al. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells[J]. BMC Microbiol, 2013, 13:125.
doi: 10.1186/1471-2180-13-125 |
[22] |
Wei HX, Zhou LJ, Wu SZ, et al. Host cell Rac1 GTPase facilitates Toxoplasma gondii invasion[J]. Sci Chin Life Sci, 2020, 63(4):610-612.
doi: 10.1007/s11427-019-9564-0 |
[23] |
Chen J, Sathiyamoorthy K, Zhang XM, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus[J]. Nat Microbiol, 2018, 3(2):172-180.
doi: 10.1038/s41564-017-0081-7 pmid: 29292384 |
[24] |
Zhang H, Li Y, Wang HB, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry[J]. Nat Microbiol, 2018, 3(2):1-8.
doi: 10.1038/s41564-017-0080-8 pmid: 29292383 |
[25] |
Cook JH, Ueno N, Lodoen MB. Toxoplasma gondii disrupts β1 integrin signaling and focal adhesion formation during monocyte hypermotility[J]. J Biol Chem, 2018, 293(9):3374-3385.
doi: 10.1074/jbc.M117.793281 |
[26] |
Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, et al. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration[J]. Cell Microbiol, 2021, 23(3):e13283.
doi: 10.1111/cmi.13283 pmid: 33108050 |
[27] | Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol, 2005, 6(1):9-20. |
[28] |
Cui DR, Xiong XF, Zhao YC. Cullin-RING ligases in regulation of autophagy[J]. Cell Div, 2016, 11:8.
doi: 10.1186/s13008-016-0022-5 |
[29] |
Wan P, Zhang Q, Liu WY, et al. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation[J]. FASEB J, 2019, 33(4):5793-5807.
doi: 10.1096/fsb2.v33.4 |
[30] |
Tanaka K, Kawakami T, Tateishi K, et al. Control of IkappaBalpha proteolysis by the ubiquitin-proteasome pathway[J]. Biochimie, 2001, 83(3/4):351-356.
doi: 10.1016/S0300-9084(01)01237-8 |
[31] |
Pan ZQ, Kentsis A, Dias DC, et al. Nedd8 on cullin: building an expressway to protein destruction[J]. Oncogene, 2004, 23(11):1985-1997.
doi: 10.1038/sj.onc.1207414 |
[1] | LI Jia-ming, WANG Yi-xuan, YANG Ning-ai, MA Hui-hui, LAN Min, LIU Chun-lan, ZHAO Zhi-jun. Effects of ROP16 protein of Toxoplasma gondii on polarization and apoptosis of MH-S cells and their related mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 579-586. |
[2] | ZOU Wei-hao, WU Wei-ling, LIAO Yuan-peng, CHEN Min, PENG Hong-juan. Preparation and application of monoclonal antibody against Toxoplasma gondii bradyzoite antigen 1 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 587-593. |
[3] | DAI Li-sha, ZHANG Li-xin, YIN Kun. Research advances in Toxoplasma gondii induced host mental-behavioural disorders [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 642-646. |
[4] | WANG Jie, WEN Hong-yang, CHEN Ying, AN Ran, LUO Qing-li, SHEN Ji-long, DU Jian. Construction and identification of macrophage migration inhibitory factor gene knockout strain of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 349-354. |
[5] | WANG Zhen-xun, XIONG Si-si, SUN Xia-hui, WANG Yong-liang, PAN Ge, HE Shen-yi, CONG Hua. Differential expression and action mechanism of lncRNA102796 in the brain of mice with chronic infection of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 187-193. |
[6] | JIANG Feng, CHEN Run, DU Ning-ning, ZHU Meng-yi, ZHONG Hao, CHEN Hui, XI Xu-xia, ZHAN Xiao-dong, LI Chao-pin. Investigation of Toxoplasma gondii infection in pet dogs and cats in Wuhu City [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 124-126. |
[7] | LU Fei, ZHUO Xun-hui, LU Shao-hong. Research progress on the interaction between host cell autophagy and apicomplexa protozoa infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 826-831. |
[8] | ZHANG Xiao-han, FENG Ying, CHEN Ran, SANG Xiao-yu, YANG Na. Advances in research of structure, function and regulatory mechanism of Toxoplasma gondii conoid [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 832-835. |
[9] | WANG Long-jiang, LI Jin, YIN Kun, XU Chao, LIU Gong-zhen, HUANG Bing-cheng, WEI Qing-kuan, SUN Hui. Comparative analysis of transcriptomes in Toxoplasma gondii before and after invasion in human foreskin fibroblasts [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 480-486. |
[10] | ZHANG Li-xin, ZHAO Gui-hua, XU Chao, XIAO Ting, SUN Hui, LI Jin, LIU Gong-zhen, YIN Kun. Construction of an infection model of Toxoplasma gondii RH tachyzoite invasion to mouse macrophage cell line in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 494-501. |
[11] | HOU Yong-heng, LV Fang-li. The interplay between Toxoplasma gondii infection and autophagy in host cells [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 537-542. |
[12] | HUANG Zi-yun, LV Fang-li. Solid organ transplantation and toxoplasmosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 386-392. |
[13] | HE Cheng, PAN Shuai, XU Mei-zhen, YUAN Fei, HE Jing-mei, LIU Zhuan-zhuan. Proteome-based identification and bioinformatics analysis of protein phosphatases of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(1): 120-124. |
[14] | DU Kai-ge, ZHUO Xun-hui, LU Shao-hong. Research advances on the innate immunity mechanisms against Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 764-770. |
[15] | ZHANG Fu-qiang, QIAO Jiao-jiao, LI Hao-ran, ZHANG Zhen-chao, LI Xiang-rui, WANG Shuai. Research progress on the anti-tumor effects of Toxoplasma gondii and the underlying mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 496-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||