CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (4): 487-493.doi: 10.12140/j.issn.1000-7423.2021.04.011
• ORIGINAL ARTICLES • Previous Articles Next Articles
LIAO Wen-zhong(), XU Li-qing, YAO Li-jie, CHEN Min, PENG Hong-juan*(
)
Received:
2021-01-22
Revised:
2021-02-24
Online:
2021-08-30
Published:
2021-06-18
Contact:
PENG Hong-juan
E-mail:littlezissy@163.com;hongjuan@smu.edu.cn
Supported by:
CLC Number:
LIAO Wen-zhong, XU Li-qing, YAO Li-jie, CHEN Min, PENG Hong-juan. Characterization of ubiquitinated protein profile change in host cells caused by Toxoplasma gondii infection[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 487-493.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.04.011
Table 1
Gene Ontology (GO)enrichment of differentially ubiquitinated proteins in RH and ME49 infection groups
本体 Ontology | RH感染组RH infection group | ME49感染组ME49 infection group | |||
---|---|---|---|---|---|
GO 项 GO terms | 基因数量 Gene count | GO 项 GO terms | 基因数量 Gene count | ||
细胞组分 Cellular component | 细胞质 Cytoplasm | 77 | 胞质溶胶 Cytosol | 16 | |
胞质溶胶 Cytosol | 60 | 细胞外泌体 Extracellular exosome | 15 | ||
细胞膜Membrane | 57 | 细胞膜Membrane | 9 | ||
细胞外泌体 Extracellular exosome | 56 | 黏着斑 Focal adhesion | 5 | ||
线粒体 Mitochondrion | 24 | 核糖体 Ribosome | 4 | ||
内质网 Endoplasmic reticulum | 19 | 片状脂质体 Lamellipodium | 3 | ||
细胞核 Nucleolus | 17 | 丝状肌动蛋白 Filamentous actin | 2 | ||
黏着斑 Focal adhesion | 14 | ||||
内质网膜 Endoplasmic reticulum membrane | 14 | ||||
高尔基体膜 Golgi membrane | 13 | ||||
生物进程 Biological process | 翻译 Translation | 15 | 翻译 Translation | 4 | |
病毒过程 Viral process | 14 | 肝配蛋白受体传导途径 Ephrin receptor signaling pathway | 3 | ||
SRP依赖的共翻译蛋白靶向膜 SRP-dependent cotranslational protein targeting to membrane | 13 | SRP依赖的共翻译蛋白靶向膜 SRP-dependent cotranslational protein targeting to membrane | 3 | ||
细胞内蛋白质 Intracellular protein transport | 13 | 病毒转录 Viral transcription | 3 | ||
病毒转录 Viral transcription | 12 | 核转录的mRNA分解过程, 无意义介导的衰变 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay | 3 | ||
翻译起始 Translational initiation | 12 | 翻译起始 Translational initiation | 3 | ||
rRNA加工 rRNA processing | 12 | rRNA加工 rRNA processing | 3 | ||
核转录的mRNA分解过程,无意义介导的衰变 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay | 11 | 网格蛋白介导的内吞作用 Clathrin-mediated endocytosis | 2 | ||
细胞分裂 Cell division | 9 | 细胞质翻译 Cytoplasmic translation | 2 | ||
细胞连接 Cell-cell adhesion | 8 | 细胞对葡萄糖饥饿的反应 Cellular response to glucose starvation | 2 | ||
分子功能 Molecular function | 蛋白质结合 Protein binding | 108 | 蛋白质结合 Protein binding | 20 | |
poly(A) RNA结合 poly(A) RNA binding | 32 | 核糖体的结构成分 Structural constituent of ribosome | 4 | ||
ATP结合 ATP binding | 26 | 肌动蛋白丝结合Actin filament binding | 3 | ||
RNA结合 RNA binding | 15 | ||||
核糖体的结构成分 Structural constituent of ribosome | 14 | ||||
泛素蛋白连接酶结合 Ubiquitin protein ligase binding | 11 | ||||
钙黏着蛋白结合参与细胞间黏附 Cadherin binding involved in cell-cell adhesion | 8 | ||||
GTP结合 GTP binding | 8 | ||||
蛋白质结构域特异性结合 Protein domain specific binding | 7 | ||||
GTP酶活性 GTPase activity | 7 |
[1] |
Dubey JP. The history of Toxoplasma gondii: the first 100 years[J]. J Eukaryot Microbiol, 2008, 55(6):467-475.
doi: 10.1111/jeu.2008.55.issue-6 |
[2] |
Montoya J, Liesenfeld O. Toxoplasmosis[J]. Lancet, 2004, 363(9425):1965-1976.
pmid: 15194258 |
[3] |
Hakimi MA, Olias P, Sibley LD. Toxoplasma effectors targeting host signaling and transcription[J]. Clin Microbiol Rev, 2017, 30(3):615-645.
doi: 10.1128/CMR.00005-17 |
[4] | Xia J, Peng HJ. Research advances on Toxoplasma gondii virulence mediating factors[J]. Chin J Parasitol Parasit Dis, 2015, 33(4):297-300. (in Chinese) |
(夏菁, 彭鸿娟. 刚地弓形虫毒力调节因子研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4):297-300.) | |
[5] |
Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains[J]. Nat Struct Mol Biol, 2011, 18(5):520-528.
doi: 10.1038/nsmb.2066 |
[6] |
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks[J]. Nat Rev Mol Cell Biol, 2011, 12(5):295-307.
doi: 10.1038/nrm3099 |
[7] | Yao LJ, Peng HJ. Research advances on the inhibition of interferon-γ-dependent cellular immunity by Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2017, 35(5):503-508. (in Chinese) |
(姚礼捷, 彭鸿娟. 弓形虫抑制γ干扰素依赖的宿主细胞免疫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5):503-508.) | |
[8] |
Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6):924-935.
doi: 10.1016/j.immuni.2014.05.006 |
[9] |
Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41):E5628-E5637.
doi: 10.1073/pnas.1515966112 |
[10] |
Steinfeldt T, Könen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8(12):e1000576.
doi: 10.1371/journal.pbio.1000576 |
[11] |
Lee Y, Sasai MW, Ma JS, et al. p62 plays a specific role in interferon-γ-induced presentation of a Toxoplasma vacuolar antigen[J]. Cell Rep, 2015, 13(2):223-233.
doi: 10.1016/j.celrep.2015.09.005 |
[12] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. mBio, 2015, 6(5):e01157-e01172. |
[13] |
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions[J]. Cell Mol Immunol, 2016, 13(5):560-576.
doi: 10.1038/cmi.2016.40 |
[14] |
Mesquita FS, Thomas M, Sachse M, et al. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates[J]. PLoS Pathog, 2012, 8(6):e1002743.
doi: 10.1371/journal.ppat.1002743 |
[15] |
Fiskin E, Bionda T, Dikic I, et al. Global analysis of host and bacterial ubiquitinome in response to Salmonella typhimurium infection[J]. Mol Cell, 2016, 62(6):967-981.
doi: 10.1016/j.molcel.2016.04.015 |
[16] |
Nelson MM, Jones AR, Carmen JC, et al. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii[J]. Infect Immun, 2008, 76(2):828-844.
pmid: 17967855 |
[17] | He JJ, Ma J, Wang JL, et al. iTRAQ-based quantitative proteomics analysis identifies host pathways modulated during Toxoplasma gondii infection in swine[J]. Microorganisms, 2020, 8(4):E518. |
[18] | Delorme-Walker V, Abrivard M, Lagal V, et al. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion[J]. J Cell Sci, 2012, 125(18):4333-4342. |
[19] |
Sweeney KR, Morrissette NS, LaChapelle S, et al. Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton[J]. Eukaryot Cell, 2010, 9(11):1680-1689.
doi: 10.1128/EC.00079-10 |
[20] |
He C, Kong L, Zhou LJ, et al. Host cell vimentin restrains Toxoplasma gondii invasion and phosphorylation of vimentin is partially regulated by interaction with TgROP18[J]. Int J Biol Sci, 2017, 13(9):1126-1137.
doi: 10.7150/ijbs.21247 |
[21] |
Na RH, Zhu GH, Luo JX, et al. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells[J]. BMC Microbiol, 2013, 13:125.
doi: 10.1186/1471-2180-13-125 |
[22] |
Wei HX, Zhou LJ, Wu SZ, et al. Host cell Rac1 GTPase facilitates Toxoplasma gondii invasion[J]. Sci Chin Life Sci, 2020, 63(4):610-612.
doi: 10.1007/s11427-019-9564-0 |
[23] |
Chen J, Sathiyamoorthy K, Zhang XM, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus[J]. Nat Microbiol, 2018, 3(2):172-180.
doi: 10.1038/s41564-017-0081-7 pmid: 29292384 |
[24] |
Zhang H, Li Y, Wang HB, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry[J]. Nat Microbiol, 2018, 3(2):1-8.
doi: 10.1038/s41564-017-0080-8 pmid: 29292383 |
[25] |
Cook JH, Ueno N, Lodoen MB. Toxoplasma gondii disrupts β1 integrin signaling and focal adhesion formation during monocyte hypermotility[J]. J Biol Chem, 2018, 293(9):3374-3385.
doi: 10.1074/jbc.M117.793281 |
[26] |
Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, et al. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration[J]. Cell Microbiol, 2021, 23(3):e13283.
doi: 10.1111/cmi.13283 pmid: 33108050 |
[27] | Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases[J]. Nat Rev Mol Cell Biol, 2005, 6(1):9-20. |
[28] |
Cui DR, Xiong XF, Zhao YC. Cullin-RING ligases in regulation of autophagy[J]. Cell Div, 2016, 11:8.
doi: 10.1186/s13008-016-0022-5 |
[29] |
Wan P, Zhang Q, Liu WY, et al. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation[J]. FASEB J, 2019, 33(4):5793-5807.
doi: 10.1096/fsb2.v33.4 |
[30] |
Tanaka K, Kawakami T, Tateishi K, et al. Control of IkappaBalpha proteolysis by the ubiquitin-proteasome pathway[J]. Biochimie, 2001, 83(3/4):351-356.
doi: 10.1016/S0300-9084(01)01237-8 |
[31] |
Pan ZQ, Kentsis A, Dias DC, et al. Nedd8 on cullin: building an expressway to protein destruction[J]. Oncogene, 2004, 23(11):1985-1997.
doi: 10.1038/sj.onc.1207414 |
[1] | XUE Yushan, LIN Ping, CHENG Xunjia, FENG Meng. Damage caused by chronic infection of Toxoplasma gondii on the host central nervous system and its mechanism [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 527-531. |
[2] | JIANG Wenjing, MENG Yali, ZHAO Lina, WANG Chunmiao, ZHANG Xiaolei. Immunoprotection of nuclei acid vaccine dual-targeting rhoptry protein 18 and surface antigen 30 of Toxoplasma gondii in mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 532-538. |
[3] | ZHAO Ziqi, LV Fangli. Study on the inhibitory effect of artemether liposome on Toxoplasma gondii proliferation in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 446-451. |
[4] | ZHANG Xu, SUN Ximeng. Research progress on the immune evasion mechanism in Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 492-496. |
[5] | ZHANG Chi, CHEN Jiating, XIN Zixuan, YANG Lili, YANG Zihan, PENG Hongjuan. Transcriptome analysis of mice brain chronically infected with Toxoplasma gondii and validation of the kynurenine pathway associated with depression [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 270-278. |
[6] | OU Yangran, LIU Xingzhuo, HUANG Shiguang, LYU Fangli. Effect of locking galectin-receptor interaction on the immunopathology of small intestine of Toxoplasma gondii-infected mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 279-285. |
[7] | XU Shaojie, CHEN Shenbo, CHEN Junhu. Research progress on transcription regulation of rif gene in Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 374-379. |
[8] | DU Juan, LI Jia, WU Di, YU Qi, ZHANG Wei, BAI Runian, GUO Junlin, LIU Qingbin, LEI Qili, GU Chuanhui, WANG Meng, ZHAO Haojun. Seroepidemiological survey of Toxoplasma gondii infection in dogs and cats in Beijing 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 389-392. |
[9] | LI Jia-ming, WANG Yi-xuan, YANG Ning-ai, MA Hui-hui, LAN Min, LIU Chun-lan, ZHAO Zhi-jun. Effects of ROP16 protein of Toxoplasma gondii on polarization and apoptosis of MH-S cells and their related mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 579-586. |
[10] | ZOU Wei-hao, WU Wei-ling, LIAO Yuan-peng, CHEN Min, PENG Hong-juan. Preparation and application of monoclonal antibody against Toxoplasma gondii bradyzoite antigen 1 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 587-593. |
[11] | DAI Li-sha, ZHANG Li-xin, YIN Kun. Research advances in Toxoplasma gondii induced host mental-behavioural disorders [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 642-646. |
[12] | WANG Jie, WEN Hong-yang, CHEN Ying, AN Ran, LUO Qing-li, SHEN Ji-long, DU Jian. Construction and identification of macrophage migration inhibitory factor gene knockout strain of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 349-354. |
[13] | WANG Zhen-xun, XIONG Si-si, SUN Xia-hui, WANG Yong-liang, PAN Ge, HE Shen-yi, CONG Hua. Differential expression and action mechanism of lncRNA102796 in the brain of mice with chronic infection of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 187-193. |
[14] | JIANG Feng, CHEN Run, DU Ning-ning, ZHU Meng-yi, ZHONG Hao, CHEN Hui, XI Xu-xia, ZHAN Xiao-dong, LI Chao-pin. Investigation of Toxoplasma gondii infection in pet dogs and cats in Wuhu City [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 124-126. |
[15] | LU Fei, ZHUO Xun-hui, LU Shao-hong. Research progress on the interaction between host cell autophagy and apicomplexa protozoa infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 826-831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||