| [1] | 李雨晗, 张櫶文, 程功. 虫媒病毒与生物安全[J]. 生物学杂志, 2023, 40(6): 1-6. | | | Li YH, Zhang XW, Cheng G. Arboviruses and biosafety[J]. J Biol, 2023, 40(6): 1-6. (in Chinese) | | [2] | 熊光华. 中国白蛉科白蛉种类[J]. 国际医学寄生虫病杂志, 2008, 35(6): 283-286. | | | Xiong GH. Sandfly species of Phlebotomidiae in China[J]. Int J Med Parasit Dis, 2008, 35(6): 283-286. (in Chinese) | | [3] | Zhang LM, Leng YJ. Eighty-year research of phlebotomine sandflies (Diptera:Psychodidae) in China (1915-1995). Ⅱ. Phlebotomine vectors of leishmaniasis in China[J]. Parasite, 1997, 4(4): 299-306. | | [4] | Telleria EL, Martins-da-Silva A, Tempone AJ, et al. Leishmania, microbiota and sandfly immunity[J]. Parasitology, 2018, 145(10): 1336-1353. | | [5] | Tabbabi A, Mizushima D, Yamamoto DS, et al. Sandflies and their microbiota[J]. Parasitologia, 2022, 2(2): 71-87. | | [6] | 熊光华, 金长发, 管立人. 中国的白蛉[M]. 北京: 科学出版社, 2016: 8-23. | | | Xiong GH, Jin CF, Guan LR. Chinese sandflies[M]. Beijing: Science Press, 2016: 8-23. (in Chinese) | | [7] | 熊光华, 朱显因, 赵佳. 我国首次发现自体生殖中华白蛉[J]. 动物学研究, 1981, (3): 291-293. | | | Xiong GH, Zhu XY, Zhao J. Discovery of autogeny in Phlebotomus chinensis (Newstead) in China[J]. Zool Res, 1981(3): 291-293. (in Chinese) | | [8] | 管立人. 中国白蛉(双翅目:毛蛉科)调查研究工作的展望[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(4): 310-314. | | | Guan LR. Prospect on the investigation of sandflies (Diptera: Psychodidae) in China[J]. Chin J Parasitol Parasit Dis, 2013, 31(4): 310-314. (in Chinese) | | [9] | Wilder-Smith A, Gubler DJ, Weaver SC, et al. Epidemic arboviral diseases: Priorities for research and public health[J]. Lancet Infect Dis, 2017, 17(3): e101-e106. | | [10] | Maroli M, Feliciangeli MD, Bichaud L, et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern[J]. Med Vet Entomol, 2013, 27(2): 123-147. | | [11] | World Health Organization. Leishmaniasis[EB/OL]. (2023-01-12)[2025-03-04]. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. | | [12] | Pavli A, Maltezou HC. Leishmaniasis, an emerging infection in travelers[J]. Int J Infect Dis, 2010, 14(12): e1032-e1039. | | [13] | de Vries HJC, Reedijk SH, Schallig HDFH. Cutaneous leishmaniasis: Recent developments in diagnosis and management[J]. Am J Clin Dermatol, 2015, 16(2): 99-109. | | [14] | World Health Organization. Control of the leishmaniases[R]. Geneva: World Health Organization, 2010: 5-14. | | [15] | Casulli A. New global targets for NTDs in the WHO roadmap 2021-2030[J]. PLoS Negl Trop Dis, 2021, 15(5): e0009373. | | [16] | 刘国栋. 犬内脏利什曼病时空分布、 风险因素及其媒介适生性分析[D]. 哈尔滨: 东北农业大学, 2022: 2-3. | | | Liu GD. Analysis of spatial and temporal distribution, risk factors and vector fitness of canine visceral leishmaniasis[D]. Harbin: Northeast Agricultural University, 2022: 2-3. (in Chinese) | | [17] | 王兆俊, 熊光华, 管立人. 新中国黑热病流行病学与防治成就[J]. 中华流行病学杂志, 2000(1): 51-54. | | | Wang ZJ, Xiong GH, Guan LR. Epidemiology and control achievements of kala-azar in new China[J]. Chin J Epidemiol, 2000(1): 51-54. (in Chinese) | | [18] | 周正斌, 李元元, 李中秋, 等. 2023年我国内脏利什曼病疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 559-565. | | | Zhou ZB, Li YY, Li ZQ, et al. Prevalence of visceral leishmaniasis in China in 2023[J]. Chin J Parasitol Parasit Dis, 2024, 42(5): 559-565. (in Chinese) | | [19] | 陈曦, 师悦, 周升, 等. 全球内脏利什曼病流行风险因素研究进展[J]. 中国血吸虫病防治杂志, 2024, 36(4): 412-421, 427. | | | Chen X, Shi Y, Zhou S, et al. Risk factors of visceral leishmaniasis in the world: A review[J]. Chin J Schisto Control, 2024, 36(4): 412-421, 427. (in Chinese) | | [20] | 王奇, 师悦, 秦瑶, 等. 2017—2022年中国内脏利什曼病流行特征及时空聚集性分析[J]. 热带病与寄生虫学, 2024, 22(2): 68-75. | | | Wang Q, Shi Y, Qin Y, et al. Epidemiological characteristics and spatial-temporal cluster of visceral leishmaniosis in China, 2017-2022[J]. J Trop Dis Parasitol, 2024, 22(2): 68-75. (in Chinese) | | [21] | Sacks DL. Leishmania-sandfly interactions controlling species-specific vector competence[J]. Cell Microbiol, 2001, 3(4): 189-196. | | [22] | Dillon RJ, Lane RP. Influence of Leishmania infection on blood-meal digestion in the sandflies Phlebotomus papatasi and P. langeroni[J]. Parasitol Res, 1993, 79(6): 492-496. | | [23] | Sant’anna MR, Diaz-Albiter H, Mubaraki M, et al. Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania[J]. Parasit Vectors, 2009, 2(1): 62. | | [24] | Ramalho-Ortigão M, Jochim RC, Anderson JM, et al. Exploring the midgut transcriptome of Phlebotomus papatasi: Comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania-major-infected sandflies[J]. BMC Genomics, 2007, 8: 300. | | [25] | Dostálová A, Votypka J, Favreau AJ, et al. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: Comparison of sugar fed and blood fed sandflies[J]. BMC Genomics, 2011, 12: 223. | | [26] | Volf P, Hajmova M, Sadlova J, et al. Blocked stomodeal valve of the insect vector: Similar mechanism of transmission in two trypanosomatid models[J]. Int J Parasitol, 2004, 34(11): 1221-1227. | | [27] | Dostálová A, Volf P. Leishmania development in sandflies: Parasite-vector interactions overview[J]. Parasit Vectors, 2012, 5: 276. | | [28] | Peters W, Killick-Kendrick R. The Leishmaniases in biology and medicine. Vol. 1: Biology and epidemiology[M]. London: Academic Press, 1987: 121-176. | | [29] | Ticha L, Kykalova B, Sadlova J, et al. Development of various Leishmania (Sauro leishmania) tarentolae strains in three Phlebotomus species[J]. Microorganisms, 2021, 9(11): 2256. | | [30] | Peterkova-Koci K, Robles-Murguia M, Ramalho-Ortigao M, et al. Significance of bacteria in oviposition and larval development of the sandfly Lutzomyia longipalpis[J]. Parasit Vectors, 2012, 5: 145. | | [31] | Walters AW, Hughes RC, Call TB, et al. The microbiota influences the Drosophila melanogaster life history strategy[J]. Mol Ecol, 2020, 29(3): 639-653. | | [32] | Alencar RB, de Queiroz RG, Barrett TV. Breeding sites of phlebotomine sandflies (Diptera:Psychodidae) and efficiency of extraction techniques for immature stages in Terra-firme forest in Amazonas State, Brazil[J]. Acta Trop, 2011, 118(3): 204-208. | | [33] | Gouveia C, Asensi MD, Zahner V, et al. Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera:Psychodidae)[J]. Neotrop Entomol, 2008, 37(5): 597-601. | | [34] | Oliveira SM, Moraes BA, Gonçalves CA, et al. Prevalence of microbiota in the digestive tract of wild females of Lutzomyia longipalpis Lutz & Neiva, 1912) (Diptera:Psychodidae)[J]. Rev Soc Bras Med Trop, 2000, 33(3): 319-322. | | [35] | Perira de Oliveira SM, de Morais BA, Gonçalves CA, et al. Digestive tract microbiota in female Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera :Psychodidae) from colonies feeding on blood meal and sucrose plus blood meal[J]. Cad Saude Publica, 2001, 17(1): 229-232. | | [36] | Li KL, Chen HY, Jiang JJ, et al. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera :Psychodidae) sandflies in two wild populations from China[J]. Sci Rep, 2016, 6: 36406. | | [37] | Wang J, Gou QY, Luo GY, et al. Total RNA sequencing of Phlebotomus chinensis sandflies in China revealed viral, bacterial, and eukaryotic microbes potentially pathogenic to humans[J]. Emerg Microbes Infect, 2022, 11(1): 2080-2092. | | [38] | Sant’Anna MRV, Diaz-Albiter H, Aguiar-Martins K, et al. Colonisation resistance in the sandfly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection[J]. Parasit Vectors, 2014, 7: 329. | | [39] | Hoffmann A. Wolbachia[J]. Curr Biol, 2020, 30(19): R1113-R1114. | | [40] | Serbus LR, Casper-Lindley C, Landmann F, et al. The genetics and cell biology of Wolbachia-host interactions[J]. Annu Rev Genet, 2008, 42: 683-707. | | [41] | Werren JH, Baldo L, Clark ME. Wolbachia: Master manipulators of invertebrate biology[J]. Nat Rev Microbiol, 2008, 6(10): 741-751. | | [42] | Xi ZY, Khoo CCH, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population[J]. Science, 2005, 310(5746): 326-328. | | [43] | Latrofa MS, Varotto-Boccazzi I, Louzada-Flores VN, et al. Interaction between Wolbachia pipientis and Leishmania infantum in heart worm infected dogs[J]. Parasit Vectors, 2023, 16: 77. | | [44] | McCarthy CB, Diambra LA, Rivera Pomar RV. Metagenomic analysis of taxa associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using an unbiased high-throughput approach[J]. PLoS Negl Trop Dis, 2011, 5(9): e1304. | | [45] | Vivero RJ, Castañeda-Monsalve VA, Romero LR, et al. Gut microbiota dynamics in natural populations of Pintomyia evansi under experimental infection with Leishmania infantum[J]. Microorganisms, 2021, 9(6): 1214. | | [46] | Kelly PH, Bahr SM, Serafim TD, et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum[J]. mBio, 2017, 8(1): e01121-16. | | [47] | Campolina TB, Villegas LEM, Monteiro CC, et al. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis[J]. PLoS Negl Trop Dis, 2020, 14(10): e0008666. | | [48] | Karimian F, Koosha M, Choubdar N, et al. Comparative analysis of the gut microbiota of sandfly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity[J]. PLoS Negl Trop Dis, 2022, 16(7): e0010609. | | [49] | Hurwitz I, Hillesland H, Fieck A, et al. The paratransgenic sandfly: A platform for control of Leishmania transmission[J]. Parasit Vectors, 2011, 4: 82. | | [50] | Dey R, Joshi AB, Oliveira F, et al. Gut microbes egested during bites of infected sandflies augment severity of leishmaniasis via inflammasome-derived IL-1β[J]. Cell Host Microbe, 2018, 23(1): 134-143.e6. | | [51] | Nimmo DD, Ham PJ, Ward RD, et al. The sandfly Lutzomyia longipalpis shows specific humoral responses to bacterial challenge[J]. Med Vet Entomol, 1997, 11(4): 324-328. | | [52] | Tinoco-Nunes B, Telleria EL, da Silva-Neves M, et al. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania[J]. Parasit Vectors, 2016, 9: 222. | | [53] | Diaz-Albiter H, Sant’Anna MRV, Genta FA, et al. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis[J]. J Biol Chem, 2012, 287(28): 23995-24003. | | [54] | VomáčkováKykalová B, Sassù F, Dutra-Rêgo F, et al. Pathogen-associated molecular patterns (PAMPs) derived from Leishmania and bacteria increase gene expression of antimicrobial peptides and gut surface proteins in sandflies[J]. Int J Parasitol, 2024, 54(10): 485-495. | | [55] | Pimenta PF, Modi GB, Pereira ST, et al. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sandfly midgut[J]. Parasitology, 1997, 115 (Pt 4): 359-369. | | [56] | Schlein Y, Jacobson RL. Resistance of Phlebotomus papatasi to infection with Leishmania donovani is modulated by components of the infective bloodmeal[J]. Parasitology, 1998, 117 (Pt 5): 467-473. | | [57] | Telleria EL, de Araújo APO, Secundino NF, et al. Trypsin-like serine proteases in Lutzomyia longipalpis: Expression, activity and possible modulation by Leishmania infantum chagasi[J]. PLoS One, 2010, 5(5): e10697. | | [58] | da Costa-Latgé SG, Bates P, Dillon R, et al. Characterization of glycoside hydrolase families 13 and 31 reveals expansion and diversification of α-amylase genes in the phlebotomine Lutzomyia longipalpis and modulation of sandfly glycosidase activities by Leishmania infection[J]. Front Physiol, 2021, 12: 635633. | | [59] | Jochim RC, Teixeira CR, Laughinghouse A, et al. The midgut transcriptome of Lutzomyia longipalpis: Comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sandflies[J]. BMC Genomics, 2008, 9: 15. | | [60] | Coutinho-Abreu IV, Serafim TD, Meneses C, et al. Leishmania infection induces a limited differential gene expression in the sandfly midgut[J]. BMC Genomics, 2020, 21(1): 608. | | [61] | Karimian F, Vatandoost H, Rassi Y, et al. Aerobic midgut microbiota of sandfly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates[J]. Parasit Vectors, 2019, 12(1): 10. |
|