| [1] | Shen XY, Lu JM, Lu YN, et al. Coixol ameliorates Toxoplasma gondii infection-induced lung injury by interfering with T. gondii HSP70/TLR4/NF-κB signaling pathway[J]. Int Immunopharmacol, 2023, 118: 110031. | | [2] | Milne GC, Webster JP, Walker M. Is the incidence of congenital toxoplasmosis declining?[J]. Trends Parasitol, 2023, 39(1): 26-37. | | [3] | Barros M, Teixeira D, Vilanova M, et al. Vaccines in congenital toxoplasmosis: Advances and perspectives[J]. Front Immunol, 2020, 11: 621997. | | [4] | 章孝成, 胡媛, 彭荟, 等. 基于CRISPR/Cas9技术的刚地弓形虫bfd2缺陷虫株的构建及表型分析[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(2): 217-222. | | | Zhang XC, Hu Y, Peng H, et al. CRISPR/Cas9-based generation of the bfd2 deficient strain of Toxoplasma gondii and analysis its phenotype[J]. Chin J Parasitol Parasit Dis, 2025, 43(2): 217-222. (in Chinese) | | [5] | Gomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal-maternal interface during pregnancy[J]. J Leukoc Biol, 2010, 88(4): 625-633. | | [6] | Ma XQ, Chen X, Mu XF, et al. Epigenetics of maternal-fetal interface immune microenvironment and placental related pregnancy complications[J]. Front Immunol, 2025, 16: 1549839. | | [7] | Madadi S, Mohammadinejad S, Alizadegan A, et al. Expression level of immune checkpoint inhibitory factors in preeclampsia[J]. Hum Immunol, 2022, 83(8/9): 628-636. | | [8] | 景天宇, 牟汝涛, 张帆, 等. 孕期刚地弓形虫感染对滋养层细胞和蜕膜免疫细胞表面CD73表达的影响及其与不良妊娠的关系[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(2): 210-216. | | | Jing TY, Mou RT, Zhang F, et al. Effect of Toxoplasma gondii infection during pregnancy on CD73 expression in trophoblasts and decidual immune cells and the association of CD73 expression with adverse pregnancy[J]. Chin J Parasitol Parasit Dis, 2025, 43(2): 210-216. (in Chinese) | | [9] | Zhang D, Ren LQ, Zhao MD, et al. Role of Tim-3 in decidual macrophage functional polarization during abnormal pregnancy with Toxoplasma gondii infection[J]. Front Immunol, 2019, 10: 1550. | | [10] | Li ZD, Zhao MD, Li T, et al. Decidual macrophage functional polarization during abnormal pregnancy due to Toxoplasma gondii: Role for LILRB4[J]. Front Immunol, 2017, 8: 1013. | | [11] | Cui LJ, Wang Y, Ren LQ, et al. Effect of B7-H4 downregulation induced by Toxoplasma gondii infection on dysfunction of decidual macrophages contributes to adverse pregnancy outcomes[J]. Parasit Vectors, 2022, 15(1): 464. | | [12] | Bello C, Heinisch PP, Mihalj M, et al. Indoleamine-2,3-dioxygenase as a perioperative marker of the immune system[J]. Front Physiol, 2021, 12: 766511. | | [13] | Wang Y, Zhao XY, Li ZD, et al. Decidual natural killer cells dysfunction is caused by IDO downregulation in dMDSCs with Toxoplasma gondii infection[J]. Commun Biol, 2024, 7(1): 669. | | [14] | van der Zwan A, van Unen V, Beyrend G, et al. Visualizing dynamic changes at the maternal-fetal interface throughout human pregnancy by mass cytometry[J]. Front Immunol, 2020, 11: 571300. | | [15] | Levenson D, Romero R, Miller D, et al. The maternal-fetal interface at single-cell resolution: Uncovering the cellular anatomy of the placenta and decidua[J]. Am J Obstet Gynecol, 2025, 232(4S): S55-S79. | | [16] | Luo FY, Liu FL, Guo YZ, et al. Single-cell profiling reveals immune disturbances landscape and HLA-F-mediated immune tolerance at the maternal-fetal interface in preeclampsia[J]. Front Immunol, 2023, 14: 1234577. | | [17] | Zhu DM, Zou HJ, Liu JX, et al. Inhibition of HMGB1 ameliorates the maternal-fetal interface destruction in unexplained recurrent spontaneous abortion by suppressing pyroptosis activation[J]. Front Immunol, 2021, 12: 782792. | | [18] | de Souza G, Teixeira SC, Fajardo Martínez AF, et al. Trypanosoma cruzi P21 recombinant protein modulates Toxoplasma gondii infection in different experimental models of the human maternal-fetal interface[J]. Front Immunol, 2023, 14: 1243480. | | [19] | Xie HB, Li ZD, Zheng GM, et al. Tim-3 downregulation by Toxoplasma gondii infection contributes to decidual dendritic cell dysfunction[J]. Parasit Vectors, 2022, 15(1): 393. | | [20] | Guo JJ, Wang XH, Wei L, et al. Toxoplasma gondii ROP18 induces maternal-fetal dysfunction by downregulating CD73 expression on decidual macrophages[J]. Parasit Vectors, 2025, 18(1): 72. | | [21] | 郑广福, 刘现兵, 姜昱竹, 等. 刚地弓形虫感染孕鼠胎盘组织中中性粒细胞和IL-17与不良妊娠结局的关系[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 48-54. | | | Zheng GF, Liu XB, Jiang YZ, et al. Imvolvement of placental neutrophils and IL-17 in adverse pregnancy outcome caused by Toxoplasma gondii infection in pregnant mice[J]. Chin J Parasitol Parasit Dis, 2024, 42(1): 48-54. (in Chinese) | | [22] | Salmon T, Bruno CEM, de Amorim AF, et al. Presence of the protein indoleamine 2,3-dioxygenase (IDO) in the maternal-fetal interface of the yolk sac placenta of blue shark, Prionace glauca[J]. Fish Shellfish Immunol, 2020, 100: 256-260. | | [23] | Zhang XH, Wei HM. Role of decidual natural killer cells in human pregnancy and related pregnancy complications[J]. Front Immunol, 2021, 12: 728291. | | [24] | Ban YL, Zhao Y, Liu F, et al. Effect of indoleamine 2,3-dioxygenase expressed in HTR-8/SVneo cells on decidual NK cell cytotoxicity[J]. Am J Reprod Immunol, 2016, 75(5): 519-528. | | [25] | Zhao Y, Miao CY, Wang RY, et al. Jianpi Antai formula prevents miscarriage by repressing M1 polarization of decidual macrophages through ubiquitination of NLRP3 mediated by MARCH7[J]. J Ethnopharmacol, 2024, 324: 117796. | | [26] | Wang XF, Wang HS, Wang H, et al. The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: Focus on macrophage polarization of THP-1 cells[J]. Cell Immunol, 2014, 289(1/2): 42-48. | | [27] | Yeung AWS, Terentis AC, King NJC, et al. Role of indoleamine 2,3-dioxygenase in health and disease[J]. Clin Sci, 2015, 129(7): 601-672. | | [28] | Ligam P, Manuelpillai U, Wallace EM, et al. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: Implications for role of the kynurenine pathway in pregnancy[J]. Placenta, 2005, 26(6): 498-504. | | [29] | Heikkinen J, Möttönen M, Komi J, et al. Phenotypic characterization of human decidual macrophages[J]. Clin Exp Immunol, 2003, 131(3): 498-505. | | [30] | Saito S, Shima T, Nakashima A, et al. What is the role of regulatory T cells in the success of implantation and early pregnancy?[J]. J Assist Reprod Genet, 2007, 24(9): 379-386. | | [31] | Segerer SE, Rieger L, Kapp M, et al. MIC-1 (a multifunctional modulator of dendritic cell phenotype and function) is produced by decidual stromal cells and trophoblasts[J]. Hum Reprod, 2012, 27(1): 200-209. | | [32] | Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion[J]. Mol Hum Reprod, 2005, 11(12): 865-870. | | [33] | Petroff MG. Immune interactions at the maternal-fetal interface[J]. J Reprod Immunol, 2005, 68(1/2): 1-13. | | [34] | Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies[J]. Am J Reprod Immunol, 2018, 79(4): e12786. | | [35] | Zhang J, Liu H, Shen Y, et al. Macrophage AHR-TLR4 cross-talk drives p-STAT3 (Ser727)-mediated mitochondrial oxidative stress and upregulates IDO/ICAM-1 in the steatohepatitis induced by aflatoxin B1[J]. Sci Total Environ, 2024, 923:171377. | | [36] | Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science, 1998, 281(5380): 1191-1193. | | [37] | Frumento G, Rotondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase[J]. J Exp Med. 2002, 196(4): 459-68. |
|