[1] | Soares Magalh?es RJ, Biritwum NK, Gyapong JO, et al. Mapping helminth co-infection and co-intensity: Geostatistical prediction in Ghana[J]. PLoS Negl Trop Dis, 2011, 5(6): e1200. | [2] | Clark NJ, Owada K, Ruberanziza E, et al. Parasite associations predict infection risk: Incorporating co-infections in predictive models for neglected tropical diseases[J]. Parasit Vectors, 2020, 13(1): 138. | [3] | Wang ZD, Wang SC, Liu HH, et al. Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: A systematic review and meta-analysis[J]. Lancet HIV, 2017, 4(4): e177.e188. | [4] | Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-a clinical perspective[J]. Parasite Immunol, 2023, 45(4): e12949. | [5] | Sorobetea D, Svensson-Frej M, Grencis R. Immunity to gastrointestinal nematode infections[J]. Mucosal Immunol, 2018, 11(2): 304-315. | [6] | Fadaei T, Saki J, Arjmand R, et al. Toxoplasma gondii and Toxocara spp. contamination in university area[J]. Ann Parasitol, 2024, 70(2): 101-111. | [7] | Jones JL, Kruszon-Moran D, Won K, et al. Toxoplasma gondii and Toxocara spp. co-infection[J]. Am J Trop Med Hyg, 2008, 78(1): 35-39. | [8] | Montoya J, Liesenfeld O. Toxoplasmosis[J]. Lancet, 2004, 363(9425): 1965-1976. | [9] | Ma GX, Holland CV, Wang T, et al. Human toxocariasis[J]. Lancet Infect Dis, 2018, 18(1): e14.e24. | [10] | Schoenardie ER, Scaini CJ, Pepe MS, et al. Vertical transmission of Toxocara canis in successive generations of mice[J]. Rev Bras Parasitol Vet, 2013, 22(4): 623-626. | [11] | Santos PC, Telmo PL, Lehmann LM, et al. Risk and other factors associated with toxoplasmosis and toxocariasis in pregnant women from southern Brazil[J]. J Helminthol, 2017, 91(5): 534-538. | [12] | Cabral Monica T, Evers F, de Souza Lima Nino B, et al. Socioeconomic factors associated with infection by Toxoplasma gondii and Toxocara canis in children[J]. Transbound Emerg Dis, 2022, 69(3): 1589-1595. | [13] | Pacheco-Ortega GA, Chan-Pérez JI, Ortega-Pacheco A, et al. Screening of zoonotic parasites in playground sandboxes of public parks from subtropical Mexico[J]. J Parasitol Res, 2019, 2019: 7409076. | [14] | Poulin R. The evolution of parasite manipulation of host behaviour: A theoretical analysis[J]. Parasitology, 1994, 109 Suppl: S109.S118. | [15] | Holland CV, Cox DM. Toxocara in the mouse: A model for parasite-altered host behaviour?[J]. J Helminthol, 2001, 75(2): 125-135. | [16] | Webster JP. Rats, cats, people and parasites: The impact of latent toxoplasmosis on behaviour[J]. Microbes Infect, 2001, 3(12): 1037-1045. | [17] | Dubey JP. Tissue cyst tropism in Toxoplasma gondii: A comparison of tissue cyst formation in organs of cats, and rodents fed oocysts[J]. Parasitology, 1997, 115 (Pt 1): 15-20. | [18] | Boillat M, Hammoudi PM, Dogga SK, et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii[J]. Cell Rep, 2020, 30(2): 320-334. e6. | [19] | Berdoy M, Webster JP, Macdonald DW. Fatal attraction in rats infected with Toxoplasma gondii[J]. Proc Biol Sci, 2000, 267(1452): 1591-1594. | [20] | Abdulai-Saiku S, Tong WH, Vyas A. Behavioral manipulation by Toxoplasma gondii: Does brain residence matter?[J]. Trends Parasitol, 2021, 37(5): 381-390. | [21] | Cox DM, Holland CV. The relationship between numbers of larvae recovered from the brain of Toxocara canis-infected mice and social behaviour and anxiety in the host[J]. Parasitology, 1998, 116 ( Pt 6): 579-594. | [22] | Holland CV, Hamilton CM. The significance of cerebral toxocariasis: A model system for exploring the link between brain involvement, behaviour and the immune response[J]. J Exp Biol, 2013, 216(Pt 1): 78-83. | [23] | Santos SV, Moura JVL, Lescano SAZ, et al. Behavioural changes and muscle strength in Rattus norvegicus experimentally infected with Toxocara cati and T. canis[J]. J Helminthol, 2015, 89(4): 465-470. | [24] | Corrêa FM, Chieffi PP, Lescano SAZ, et al. Behavioral and memory changes in Mus musculus coinfected by Toxocara canis and Toxoplasma gondii[J]. Rev Inst Med Trop Sao Paulo, 2014, 56(4): 353-356. | [25] | Witting PA. Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice[J]. Z Parasitenkd, 1979, 61(1): 29-51. | [26] | Lescano SA, Nakhle MC, Ribeiro MC. IgG antibody responses in mice coinfected with Toxocara canis and other helminths or protozoan parasites[J]. Rev Inst Med Trop Sao Paulo, 2012, 54(3): 145-152. | [27] | Queiroz ML, Viel TA, Papa CHG, et al. Behavioral changes in Rattus norvegicus coinfected by Toxocara canis and Toxoplasma gondii[J]. Rev Inst Med Trop Sao Paulo, 2013, 55(1): 51-53. | [28] | Thomas F, Adamo S, Moore J. Parasitic manipulation: Where are we and where should we go?[J]. Behav Processes, 2005, 68(3): 185-199. | [29] | Li R, Zhang B, Chen C. Comparison of structures and inhibition activities of serine protease inhibitors of Trichinella spiralis and Trichinella pseudospiralis[J]. Cell Biosci, 2025, 15(1): 35. | [30] | Saad AE, Ashour DS, Rashad E. Immunomodulatory effects of chronic trichinellosis on Toxoplasma gondii RH virulent strain in experimental rats[J]. Pathog Glob Health, 2023, 117(4): 417-434. | [31] | Bokken GCAM, van Eerden E, Opsteegh M, et al. Specific serum antibody responses following a Toxoplasma gondii and Trichinella spiralis co-infection in swine[J]. Vet Parasitol, 2012, 184(2/3/4): 126-132. | [32] | Maizels RM, Hewitson JP, Murray J, et al. Immune modulation and modulators in Heligmosomoides polygyrus infection[J]. Exp Parasitol, 2012, 132(1): 76-89. | [33] | Szabo EK, Bowhay C, Forrester E, et al. Heligmosomoides bakeri and Toxoplasma gondii co-infection leads to increased mortality associated with changes in immune resistance in the lymphoid compartment and disease pathology[J]. PLoS One, 2024, 19(7): e0292408. | [34] | Ahmed N, French T, Rausch S, et al. Toxoplasma co-infection prevents Th2 differentiation and leads to a helminth-specific Th1 response[J]. Front Cell Infect Microbiol, 2017, 7: 341. | [35] | Rovira-Diaz E, El-Naccache DW, Reyes J, et al. The impact of helminth coinfection on innate and adaptive immune resistance and disease tolerance during toxoplasmosis[J]. J Immunol, 2022, 209(11): 2160-2171. | [36] | French T, Düsedau HP, Steffen J, et al. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-γ-dependent manner[J]. J Neuroinflammation, 2019, 16(1): 159. | [37] | Marple A, Wu WH, Shah S, et al. Cutting edge: Helminth coinfection blocks effector differentiation of CD8 T cells through alternate host Th2- and IL-10-mediated responses[J]. J Immunol, 2017, 198(2): 634-639. | [38] | Camberis M, Le Gros G, Urban Jr J. Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus[J]. Curr Protoc Immunol, 2003, 55: 19.12. 1-19.12.27. | [39] | Liesenfeld O, Dunay IR, Erb KJ. Infection with Toxoplasma gondii reduces established and developing Th2 responses induced by Nippostrongylus brasiliensis infection[J]. Infect Immun, 2004, 72(7): 3812-3822. |
|