[1] | Papaiakovou M, Littlewood DTJ, Doyle SR, et al. Worms and bugs of the gut: the search for diagnostic signatures using barcoding, and metagenomics-metabolomics[J]. Parasit Vectors, 2022, 15(1): 118. | [2] | Peachey LE, Jenkins TP, Cantacessi C. This gut ain’t big enough for both of us. Or is it? Helminth-microbiota interactions in veterinary species[J]. Trends Parasitol, 2017, 33(8): 619-632. | [3] | Llinás-Caballero K, Caraballo L. Helminths and bacterial microbiota: the interactions of two of humans’ “old friends”[J]. Int J Mol Sci, 2022, 23(21): 13358. | [4] | Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity[J]. Mucosal Immunol, 2018, 11(4): 1039-1046. | [5] | Zaiss MM, Rapin A, Lebon L, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation[J]. Immunity, 2015, 43(5): 998-1010. | [6] | Reed EK, Smith KA. Using our understanding of interactions between helminth metabolism and host immunity to target worm survival[J]. Trends Parasitol, 2024, 40(7): 549-561. | [7] | Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation[J]. Mucosal Immunol, 2019, 12(4): 851-861. | [8] | Li JN, Dawson PA. Animal models to study bile acid metabolism[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2019, 1865(5): 895-911. | [9] | Wahlstr?m A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. | [10] | Johnston CJ, Robertson E, Harcus Y, et al. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products[J]. J Vis Exp, 2015(98): e52412. | [11] | Monte MJ, Marin JJG, Antelo A, et al. Bile acids: chemistry, physiology, and pathophysiology[J]. World J Gastroenterol, 2009, 15(7): 804-816. | [12] | Lane JM, Brosschot TP, Gatti DM, et al. Chronic small intestinal helminth infection perturbs bile acid homeostasis and disrupts bile acid signaling in the murine small intestine[J]. Front Parasitol, 2023, 2: 1214136. | [13] | Magnaval JF, Glickman LT, Dorchies P, et al. Highlights of human toxocariasis[J]. Korean J Parasitol, 2001, 39(1): 1-11. | [14] | Smith H, Holland C, Taylor M, et al. How common is human toxocariasis? Towards standardizing our knowledge[J]. Trends Parasitol, 2009, 25(4): 182-188. | [15] | Zheng WB, Zou Y, Elsheikha HM, et al. Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis[J]. Parasit Vectors, 2019, 12(1): 447. | [16] | Pittman J, Shepherd G, Thacker B,et al. Trichuris suis in fini- shing pigs: case report and review[J]. J Swine Health Prod, 2010, 18(6): 306-313. | [17] | Dawson HD, Chen C, Li RW, et al. Molecular and metabolomic changes in the proximal colon of pigs infected with Trichuris suis[J]. Sci Rep, 2020, 10(1): 12853. | [18] | Zhang YX, Zhang BG. Research progress on the interaction between human helminth infection and intestinal flora[J]. J Trop Dis Parasitol, 2022, 20(5): 295-299. (in Chinese) | | (张艺馨, 张本光. 人体蠕虫感染对肠道菌群影响的研究进展[J]. 热带病与寄生虫学, 2022, 20(5): 295-299.) | [19] | Sun XM, Hao CY, Wu AQ,et al. Trichinella spiralis-induced immunomodulation signatures on gut microbiota and metabolic pathways in mice[J]. PLoS Pathog, 2024, 20(1): e1011893. | [20] | Kalia N, Hardcastle J, Keating C, et al. Intestinal secretory and absorptive function in Trichinella spiralis mouse model of postinfective gut dysfunction: role of bile acids[J]. Gut, 2008, 57(1): 41-49. | [21] | Smout MJ, Laha T, Mulvenna J, et al. A granulin-like growth factor secreted by the carcinogenic liver fluke, Opisthorchis viverrini, promotes proliferation of host cells[J]. PLoS Pathog, 2009, 5(10): e1000611. | [22] | Sithithaworn P, Andrews RH, Nguyen VD, et al. The current status of opisthorchiasis and clonorchiasis in the Mekong Basin[J]. Parasitol Int, 2012, 61(1): 10-16. | [23] | Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand[J]. Curr Opin Gastroenterol, 2008, 24(3): 349-356. | [24] | Vale N, Gouveia MJ, Botelho M, et al. Carcinogenic liver fluke Opisthorchis viverrini oxysterols detected by LC-MS/MS survey of soluble fraction parasite extract[J]. Parasitol Int, 2013, 62(6): 535-542. | [25] | Mairiang E, Mairiang P. Clinical manifestation of opisthorchiasis and treatment[J]. Acta Trop, 2003, 88(3): 221-227. | [26] | Choi D, Lim JH, Lee KT, et al. Cholangiocarcinoma and Clonorchis sinensis infection: a case-control study in Korea[J]. J Hepatol, 2006, 44(6): 1066-1073. | [27] | Xu M, Jiang ZH, Huang W, et al. Altered gut microbiota composition in subjects infected with Clonorchis sinensis[J]. Front Microbiol, 2018, 9: 2292. | [28] | Qian MB, Utzinger J, Keiser J, et al. Clonorchiasis[J]. Lancet, 2016, 387(10020): 800-810. | [29] | Huang YL, Huang DN, Geng YJ, et al. An integrated control strategy takes Clonorchis sinensis under control in an endemic area in South China[J]. Vector Borne Zoonotic Dis, 2017, 17(12): 791-798. | [30] | Cho PY, Kim TI, Whang SM, et al. Gene expression profile of Clonorchis sinensis metacercariae[J]. Parasitol Res, 2008, 102(2): 277-282. | [31] | Matern H, Boermans H, Lottspeich F, et al. Molecular cloning and expression of human bile acid beta-glucosidase[J]. J Biol Chem, 2001, 276(41): 37929-37933. | [32] | Zhang XL, Han S, Jiang X, et al. Comparative analysis of bile metabolic profile in patients with biliary obstruction complicated by Clonorchis sinensis infection[J]. Front Cell Infect Microbiol, 2023, 13: 1254016. | [33] | Ling ZX, Zhu ML, Yan XM, et al. Structural and functional dysbiosis of fecal microbiota in Chinese patients with Alzheimer’s disease[J]. Front Cell Dev Biol, 2021, 8: 634069. | [34] | Litvak Y, Byndloss MX, Tsolis RM, et al. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction[J]. Curr Opin Microbiol, 2017, 39: 1-6. | [35] | Chen R, Li X, Ding J, et al. Profiles of biliary microbiota in biliary obstruction patients with Clonorchis sinensis infection[J]. Front Cell Infect Microbiol, 2023, 13: 1281745. | [36] | Pereira TA, Syn WK, Machado MV, et al. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni[J]. Clin Sci, 2015, 129(10): 875-883. | [37] | Loebermann M, Sombetzki M, Langner C, et al. Imbalance of pro- and antifibrogenic genes and bile duct injury in murine Schistosoma mansoni infection-induced liver fibrosis[J]. Trop Med Int Health, 2009, 14(11): 1418-1425. | [38] | Rath EA, Walkey M. Fatty acid and cholesterol synthesis in mice infected with the tapeworm Hymenolepis microstoma[J]. Parasitology, 1987, 95(Pt 1): 79-92. | [39] | Surgan MH, Roberts LS. Adsorption of bile salts by the cestodes, Hymenolepis diminuta and H. Microstoma[J]. J Parasitol, 1976, 62(1): 78-86. | [40] | Corbin I, Blackburn BJ, Wolowiec T, et al. Metabolic profile of the liver of mice infected with cysticerci of Taenia crassiceps[J]. Parasitol Res, 1996, 82(3): 273-275. | [41] | Gottstein B, Hemphill A. Echinococcus multilocularis: the parasite-host interplay[J]. Exp Parasitol, 2008, 119(4): 447-452. | [42] | Craig P. Echinococcus multilocularis[J]. Curr Opin Infect Dis, 2003, 16(5): 437-444. | [43] | Hemphill A, Stadelmann B, Rufener R, et al. Treatment of echinococcosis: albendazole and mebendazole: what else?[J]. Parasite, 2014, 21: 70. | [44] | Graeter T, Ehing F, Oeztuerk S, et al. Hepatobiliary complications of alveolar echinococcosis: a long-term follow-up study[J]. World J Gastroenterol, 2015, 21(16): 4925-4932. | [45] | Gómez C, Jebbawi F, Weingartner M, et al. Impact on bile acid concentrations by alveolar echinococcosis and treatment with albendazole in mice[J]. Metabolites, 2021, 11(7): 442. | [46] | Briggs MH. Metabolism of steroid hormones by schistosomes[J]. Biochim Biophys Acta, 1972, 280(3): 481-485. | [47] | Sukhdeo MV, Croll NA. The location of parasites within their hosts: bile and the site selection behaviour of nematospiroides Dubius[J]. Int J Parasitol, 1981, 11(2): 157-162. |
|