CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (2): 219-222.doi: 10.12140/j.issn.1000-7423.2023.02.015
• REVIEWS • Previous Articles Next Articles
LI Chang1,3(), DU Xinyue1, YAN Min3, WANG Zhaojun1,2,*(
)
Received:
2022-07-25
Revised:
2022-09-16
Online:
2023-04-07
Published:
2023-04-07
Contact:
WANG Zhaojun
E-mail:lc15723435326@163.com;zjwang@situ.edu.cn
Supported by:
CLC Number:
LI Chang, DU Xinyue, YAN Min, WANG Zhaojun. Research advances on the role and mechanism of neutrophil extracellular traps in parasitic infection[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 219-222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.02.015
原虫种类 | ROS依赖 | 染色质解聚信号 | NET类型 | NET的免疫防御效应 | 原虫的逃避免疫机制 | ||||
---|---|---|---|---|---|---|---|---|---|
NOX来源 | 线粒体来源 | NE | MPO | PAD4 | |||||
伊氏锥虫 | + | - | + | + | ND | 非裂解性NET | 捕获限制原虫运动 | TatD样脱氧核糖核酸酶 | |
布氏锥虫 | - | - | - | + | ND | 非裂解性NET | 捕获限制原虫运动 | TatD样脱氧核糖核酸酶 | |
克氏锥虫 | + | ND | ND | ND | + | 裂解性NET | 捕获限制原虫运动 | 无 | |
亚马逊利什曼原虫 | - | ND | + | ND | - | 非裂解性NET | 降低原虫活性 | 3'-核苷酸酶/核酸酶 | |
+ | - | + | - | + | 裂解性NET | ||||
杜氏利什曼原虫 | - | ND | ND | ND | ND | ND | 降低原虫活性 | 脂肽聚糖 | |
溶组织内阿米巴 | - | ND | + | ND | - | ND | 无 | 胆固醇保护作用 | |
恶性疟原虫 | ND | ND | + | ND | - | ND | ND | 无 |
[1] |
Silvestre-Roig C, Fridlender ZG, Glogauer M, et al. Neutrophil diversity in health and disease[J]. Trends Immunol, 2019, 40(7): 565-583.
doi: S1471-4906(19)30101-2 pmid: 31160207 |
[2] |
Hidalgo A, Casanova-Acebes M. Dimensions of neutrophil life and fate[J]. Semin Immunol, 2021, 57: 101506.
doi: 10.1016/j.smim.2021.101506 |
[3] |
Richardson IM, Calo CJ, Hind LE. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection[J]. Front Immunol, 2021, 12: 661537.
doi: 10.3389/fimmu.2021.661537 |
[4] |
Liew PX, Kubes P. The neutrophil’s role during health and disease[J]. Physiol Rev, 2019, 99(2): 1223-1248.
doi: 10.1152/physrev.00012.2018 |
[5] |
Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated[J]. Nat Rev Immunol, 2007, 7(9): 678-689.
doi: 10.1038/nri2156 pmid: 17717539 |
[6] | Faurschou M, Sørensen OE, Johnsen AH, et al. Defensin-rich granules of human neutrophils: characterization of secretory properties[J]. Biochim Biophys Acta, 2002, 1591(1/2/3): 29-35. |
[7] |
Birnberg-Weiss F, Castillo LA, Pittaluga JR, et al. Modulation of neutrophil extracellular traps release by Klebsiella pneumoniae[J]. J Leukoc Biol, 2021, 109(1): 245-256.
doi: 10.1002/JLB.4MA0620-099R |
[8] |
Bruschi M, Bonanni A, Petretto A, et al. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis[J]. J Rheumatol, 2020, 47(3): 377-386.
doi: 10.3899/jrheum.181232 pmid: 31092713 |
[9] |
Silveira JS, Antunes GL, Kaiber DB, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model[J]. J Cell Physiol, 2020, 235(1): 267-280.
doi: 10.1002/jcp.28966 pmid: 31206674 |
[10] | Xie NX, Zhang YX, Li TT, et al. Research progress of neutrophils in sepsis[J]. Chin J Immunol, 2022, 38(14): 1767-1776. (in Chinese) |
(谢楠茜, 张亚星, 李甜甜, 等. 中性粒细胞在脓毒症中的作用及研究进展[J]. 中国免疫学杂志, 2022, 38(14): 1767-1776.) | |
[11] |
Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol, 2010, 191(3): 677-691.
doi: 10.1083/jcb.201006052 pmid: 20974816 |
[12] |
Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2817-2822.
doi: 10.1073/pnas.1414055112 pmid: 25730848 |
[13] |
Parker H, Dragunow M, Hampton MB, et al. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus[J]. J Leukoc Biol, 2012, 92(4): 841-849.
doi: 10.1189/jlb.1211601 |
[14] |
Wang YM, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol, 2009, 184(2): 205-213.
doi: 10.1083/jcb.200806072 pmid: 19153223 |
[15] |
Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12):7413-7425.
doi: 10.4049/jimmunol.1000675 pmid: 21098229 |
[16] |
Yipp BG, Kubes P. NETosis: how vital is it?[J]. Blood, 2013, 122(16): 2784-2794.
doi: 10.1182/blood-2013-04-457671 pmid: 24009232 |
[17] |
Mendoza-Roldan JA, Votýpka J, Bandi C, et al. Leishmania tarentolae: a new frontier in the epidemiology and control of the leishmaniases[J]. Transbound Emerg Dis, 2022, 69(5): e1326-e1337.
doi: 10.1111/tbed.14660 pmid: 35839512 |
[18] |
Walter K, John CC. Malaria[J]. JAMA, 2022, 327(6): 597.
doi: 10.1001/jama.2021.21468 pmid: 35133414 |
[19] |
Sousa-Rocha D, Thomaz-Tobias M, Diniz LFA, et al. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating toll-like receptors[J]. PLoS One, 2015, 10(10): e0139569.
doi: 10.1371/journal.pone.0139569 |
[20] |
Wei R, Li X, Wang XC, et al. Trypanosoma evansi triggered neutrophil extracellular traps formation dependent on myeloperoxidase, neutrophil elastase, and extracellular signal-regulated kinase 1/2 signaling pathways[J]. Vet Parasitol, 2021, 296: 109502.
doi: 10.1016/j.vetpar.2021.109502 pmid: 34214944 |
[21] |
Grob D, Conejeros I, Velásquez ZD, et al. Trypanosoma brucei brucei induces polymorphonuclear neutrophil activation and neutrophil extracellular traps release[J]. Front Immunol, 2020, 11: 559561.
doi: 10.3389/fimmu.2020.559561 |
[22] |
Rochael NC, Guimarães-Costa AB, Nascimento MTC, et al. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites[J]. Sci Rep, 2015, 5: 18302.
doi: 10.1038/srep18302 |
[23] |
Guimarães-Costa AB, Nascimento MTC, Froment GS, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps[J]. Proc Natl Acad Sci USA, 2009, 106(16): 6748-6753.
doi: 10.1073/pnas.0900226106 pmid: 19346483 |
[24] |
Gabriel C, McMaster WR, Girard D, et al. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps[J]. J Immunol, 2010, 185(7): 4319-4327.
doi: 10.4049/jimmunol.1000893 pmid: 20826753 |
[25] |
Kho S, Minigo G, Andries B, et al. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria[J]. J Infect Dis, 2019, 219(12): 1994-2004.
doi: 10.1093/infdis/jiy661 pmid: 30452670 |
[26] |
Rodrigues DAS, Prestes EB, Gama AMS, et al. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes[J]. PLoS Pathog, 2020, 16(8): e1008230.
doi: 10.1371/journal.ppat.1008230 |
[27] |
Knackstedt SL, Georgiadou A, Apel F, et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria[J]. Sci Immunol, 2019, 4(40): eaaw0336.
doi: 10.1126/sciimmunol.aaw0336 |
[28] |
Zhang K, Jiang N, Chen HY, et al. TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps[J]. Sci Chin Life Sci, 2021, 64(4): 621-632.
doi: 10.1007/s11427-020-1854-2 |
[29] |
Zhou YP, Xiao B, Jiang N, et al. Expression and functional analysis of the TatD-like DNase of Plasmodium knowlesi[J]. Parasit Vectors, 2018, 11(1): 629.
doi: 10.1186/s13071-018-3251-4 |
[30] |
Freitas-Mesquita AL, Dick CF, Dos-Santos ALA, et al. Cloning, expression and purification of 3'-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps[J]. Mol Biochem Parasitol, 2019, 229: 6-14.
doi: 10.1016/j.molbiopara.2019.02.004 |
[31] |
Chagas AC, Oliveira F, Debrabant A, et al. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits Ⅻa contact activation in human plasma[J]. PLoS Pathog, 2014, 10(2): e1003923.
doi: 10.1371/journal.ppat.1003923 |
[32] |
Neumann A, Völlger L, Berends ETM, et al. Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases[J]. J Innate Immun, 2014, 6(6): 860-868.
doi: 10.1159/000363699 pmid: 25012862 |
[33] |
Ávila EE, Salaiza N, Pulido J, et al. Entamoeba histolytica trophozoites and lipopeptidophosphoglycan trigger human neutrophil extracellular traps[J]. PLoS One, 2016, 11(7): e0158979.
doi: 10.1371/journal.pone.0158979 |
[34] |
McCoy CJ, Reaves BJ, Giguère S, et al. Human leukocytes kill Brugia malayi microfilariae independently of DNA-based extracellular trap release[J]. PLoS Negl Trop Dis, 2017, 11(1): e0005279.
doi: 10.1371/journal.pntd.0005279 |
[35] |
Chuah C, Jones MK, Burke ML, et al. Defining a pro-inflammatory neutrophil phenotype in response to schistosome eggs[J]. Cell Microbiol, 2014, 16(11): 1666-1677.
doi: 10.1111/cmi.12316 pmid: 24898449 |
[36] |
Bonne-Année S, Kerepesi LA, Hess JA, et al. Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis[J]. Infect Immun, 2013, 81(9): 3346-3355.
doi: 10.1128/IAI.00625-13 pmid: 23798541 |
[37] |
Bonne-Année S, Kerepesi LA, Hess JA, et al. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis[J]. Microbes Infect, 2014, 16(6): 502-511.
doi: 10.1016/j.micinf.2014.02.012 pmid: 24642003 |
[38] |
Kamtchum-Tatuene J, Makepeace BL, Benjamin L, et al. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections[J]. Curr Opin Infect Dis, 2017, 30(1): 108-116.
doi: 10.1097/QCO.0000000000000342 pmid: 27849636 |
[39] | Bouchery T, Lefoulon E, Karadjian G, et al. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis[J]. Clin Microbiol Infect, 2013, 19(2): 131-140. |
[40] |
Tamarozzi F, Turner JD, Pionnier N, et al. Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis[J]. Sci Rep, 2016, 6: 35559.
doi: 10.1038/srep35559 pmid: 27752109 |
[41] | Sun YJ, Li ZQ, Lv FL. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma[J]. Chin J Parasitol Parasit Dis, 2019, 37(6): 713-717, 722. (in Chinese) |
(孙钰浚, 李钊琪, 吕芳丽. 日本血吸虫虫卵肉芽肿免疫病理机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 713-717, 722.) |
[1] | LI Shu-ning, LI Wen-lin, SHEN Hai-e, WANG Yang, TIAN Xi-feng. Giardia lamblia trophozoites induce the formation of neutrophil extracellular traps in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 455-460. |
[2] | Fu-rong WEI, Yue-tao YANG, Jun-yun WANG, Yan-juan WANG, Jia-ming PAN, Jian-ping CAO. Leishmania infantum infection stimulates neutrophils to generate extracellular traps in mouse [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(1): 18-22. |
[3] | SITU Yong-li1,2, SHAO Zheng1, DENG Li1, SUI Xi-xiang1, LI Hai-jian1,3, XU Qin-ying1, . Study on the protease inhibitory activity of TtSerpin1, a serine protease inhibitor from Trichuris trichiura [J]. , 2017, 35(4): 6-342-346. |
[4] | LIU Jian-zhi,XIA Chen-yang*,FENG Jing,SONG Tian-zeng,MA Xing-bin,TANG Wen-qiang. Helminth Infections in Goats in Nimu County of Tibet [J]. , 2016, 34(1): 14-8-10. |
[5] | ZHAOJian-ling*;GAOXing-zheng;QUMing. Killing Effect of Polymorphonuclear Neutrophils on Trichomonas vaginalis [J]. , 2008, 26(5): 10-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||