[1] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019,32(2):e00075-18. | [2] | Lachenmayer A, Gebbers D, Gottstein B, et al. Elevated incidence of alveolar echinococcosis in immunocompromised patients[J]. Food Waterborne Parasitol, 2019,16:e00060. | [3] | Wen H, Tuerganaili A, Shao YM, et al. Research achievements and challenges for echinococcosis control[J]. Chin J Parasitol Parasit Dis, 2015,33(6):466-471. (in Chinese) | [3] | ( 温浩, 吐尔干艾力·阿吉, 邵英梅, 等. 棘球蚴病防治成就及面临的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(6):466-471.) | [4] | Gottstein B, Wang J, Boubaker G, et al. Susceptibility versus resistance in alveolar echinococcosis (larval infection with Echinococcus multilocularis)[J]. Vet Parasitol, 2015,213(3/4):103-109. | [5] | Zhang C, Lin R, Li Z, et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model[J]. Hepatology, 2020,71(4):1297-1315. | [6] | Siddiqui S, Visvabharathy L, Wang CR. Role of group 1 CD1-restricted T cells in infectious disease[J]. Front Immunol, 2015,6:337. | [7] | Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology[J]. Cell Mol Immunol, 2016,13(3):337-346. | [8] | Liu Y, Cai YC, Chen SH, et al. Advances in research on the roles of natural killer T cells in immune responses to parasitic infections[J]. Chin J Parasitol Parasit Dis, 2020,38(4):477-481. (in Chinese) | [8] | ( 刘毅, 蔡玉春, 陈韶红, 等. 自然杀伤T细胞在寄生虫感染免疫中作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(4):477-481.) | [9] | Zhang C, Shao Y, Yang S, et al. T-cell tolerance and exhaustion in the clearance of Echinococcus multilocularis: role of inoculum size in a quantitative hepatic experimental model[J]. Sci Rep, 2017,7(1):11153. | [10] | Kriegsmann K, Kriegsmann M, von Bergwelt-Baildon M, et al. NKT cells: new players in CAR cell immunotherapy?[J]. Eur J Haematol, 2018,101(6):750-757. | [11] | Robertson FC, Berzofsky JA, Terabe M. NKT cell networks in the regulation of tumor immunity[J]. Front Immunol, 2014,5:543. | [12] | Han Y, Jiang Z, Chen Z, et al. Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1[J]. J Autoimmun, 2015,58:21-35. | [13] | Hammond KJL, Pelikan SB, Crowe NY, et al. NKT cells are phenotypically and functionally diverse[J]. Eur J Immunol, 1999,29(11):3768-3781. | [14] | Wei GJ, Tabel H. Regulatory T cells prevent control of experimental African trypanosomiasis[J]. J Immunol, 2008,180(4):2514-2521. | [15] | Antúnez MI, Cardoni RL. Trypanosoma cruzi: the expansion of NK, T, and NKT cells in the experimental infection[J]. Exp Parasitol, 2004,106(3/4):85-94. | [16] | Chuang YT, Leung K, Chang YJ, et al. A natural killer T-cell subset that protects against airway hyperreactivity[J]. J Allergy Clin Immunol, 2019,143(2):565-576. | [17] | Yang JQ, Zhou Y, Singh RR. Effects of invariant NKT cells on parasite infections and hygiene hypojournal[J]. J Immunol Res, 2016,2016:2395645. | [18] | Stange J, Hepworth MR, Rausch S, et al. IL-22 mediates host defense against an intestinal intracellular parasite in the absence of IFN-γ at the cost of Th17-driven immunopathology[J]. J Immunol, 2012,188(5):2410-2418. | [19] | Mallevaey T, Fontaine J, Breuilh L, et al. Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis[J]. Infect Immun, 2007,75(5):2171-2180. | [20] | Zamora-Chimal J, Hernández-Ruiz J, Becker I. NKT cells in leishmaniasis[J]. Immunobiology, 2017,222(4):641-646. |
|