CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2017, Vol. 35 ›› Issue (3): 299-304.
• Review • Previous Articles Next Articles
Yi-xiu FU, Qing-ming KONG, Shao-hong LU*()
Received:
2016-09-29
Online:
2017-06-30
Published:
2017-09-07
Contact:
Shao-hong LU
E-mail:llsshh2003@163.com
Supported by:
[1] | Doudna JA, Charpentier E.Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. |
[2] | Sternberg SH, Doudna JA.Expanding the Biologist’s Toolkit with CRISPR-Cas9[J]. Mol Cell, 2015, 58(4): 568-574. |
[3] | Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12): 5429-5433. |
[4] | Mojica FJ, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria[J]. Mol Microbiol, 2000, 36(1): 244-246. |
[5] | Makarova KS, Aravind L, Grishin NV, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis[J]. Nucleic Acids Res, 2002, 30(2): 482-496. |
[6] | Guy CP, Majerník AI, Chong JP, et al. A novel nuclease-ATPase(Nar71) from archaea is part of a proposed thermophilic DNA repair system[J]. Nucleic Acids Res, 2004, 32(21): 6176-6186. |
[7] | Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(Pt 8): 2551-2561. |
[8] | Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2): 174-182. |
[9] | Pourcel C, Salvignol G, Vergnaud G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(Pt 3): 653-663. |
[10] | Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
[11] | Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
[12] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. |
[13] | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
[14] | Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71. |
[15] | Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNaseIII[J]. Nature, 2011, 471(7340): 602-607. |
[16] | Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. |
[17] | Kennedy EM, Cullen BR. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment[J]. Virology, 2015, 479-480: 213-220. |
[18] | Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87. |
[19] | Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. |
[20] | Konermann S, Brigham MD, Trevino AE, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476. |
[21] | Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J]. Cell, 2013, 155(7): 1479-1491. |
[22] | Ren X, Sun J, Housden BE, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9[J]. Proc Natl Acad Sci USA, 2013, 110(47): 19012-19017. |
[23] | 蒲元华, 张德林. 弓形虫入侵宿主机制及免疫学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(6): 480-485, 490. |
[24] | Shen B, Brown KM, Lee TD, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9[J]. MBio, 2014, 5(3): e01114-e01114. |
[25] | Sidik SM, Hackett CG, Tran F, et al. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9[J]. PLoS One, 2014, 9(6): e100450. |
[26] | Sugi T, Kato K, Weiss LM.An improved method for introducing site-directed point mutation into the Toxoplasma gondii genome using CRISPR/Cas9[J]. Parasitol Int, 2016, 65(5 Pt B): 558-562. |
[27] | Peng D, Kurup SP, Yao PY, et al. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi[J]. MBio, 2014, 6(1): e02097-e02014. |
[28] | Straimer J, Lee MC, Lee AH, et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases[J]. Nat Methods, 2012, 9(10): 993-998. |
[29] | McNamara CW, Lee MC, Lim CS, et al. Targeting Plasmodium PI(4)K to eliminate malaria[J]. Nature, 2013, 504(7479): 248-253. |
[30] | Sollelis L, Ghorbal M, MacPherson CR, et al. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites[J]. Cell Microbiol, 2015, 17(10): 1405-1412. |
[31] | Zhang WW, Matlashewski G.CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. MBio, 2015, 6(4): e00861. |
[32] | Zhang C, Xiao B, Jiang Y, et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system[J]. MBio, 2014, 5(4): e01414-e01414. |
[33] | 郑斌, 陆绍红. 刚地弓形虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(5): 396-400. |
[34] | Jones NG, Wang Q, Sibley LD.Secreted protein kinases regulate cyst burden during chronic toxoplasmosis[J]. Cell Microbiol, 2016, 19(2): e12651. |
[35] | Yang M, Zheng J, Jia H, et al. Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii[J]. Parasitology, 2016, 143(11): 1443-1449. |
[36] | Zheng J, Jia H, Zheng Y.Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9[J]. Int J Parasitol, 2015, 45(2-3): 141-148. |
[37] | Wang JL, Huang SY, Li TT, et al. Evaluation of the basic functions of six calcium-dependent protein kinases in Toxoplasma gondii using CRISPR-Cas9 system[J]. Parasitol Res, 2016, 115(2): 697-702. |
[38] | Long S, Wang Q, Sibley LD.Analysis of noncanonical calcium-dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9[J]. Infect Immun, 2016, 84(5): 1262-1273. |
[39] | Shen B, Buguliskis JS, Lee TD, et al. Functional analysis of rhomboid proteases during Toxoplasma invasion[J]. MBio, 2014, 5(5): e01795-e01714. |
[40] | Stewart RJ, Tonkin CJ.Rhomboid proteases in invasion and replication of Apicomplexa[J]. Mol Microbiol, 2015, 97(2): 185-188. |
[41] | Olias P, Sibley LD.Functional analysis of the role of Toxoplasma gondii nucleoside triphosphate hydrolases Ⅰ and Ⅱ in acute mouse virulence and immune suppression[J]. Infect Immun, 2016, 84(7): 1994-2001. |
[42] | Behnke MS, Khan A, Sibley LD.Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker[J]. Eukaryotic Cell, 2015, 14(2): 140-148. |
[43] | 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 418-424. |
[44] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55. |
[45] | Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system[J]. Nat Biotechnol, 2014, 32(8): 819-821. |
[46] | Ng CL, Siciliano G, Lee MC, et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs[J]. Mol Microbiol, 2016, 101(3): 381-393. |
[47] | Lander N, Li ZH, Niyogi S, et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment[J]. MBio, 2015, 6(4): e01012-e01015. |
[48] | Vinayak S, Pawlowic MC, Sateriale A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum[J]. Nature, 2015, 523(7561): 477-480. |
[49] | Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822-826. |
[50] | Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827-832. |
[51] | Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9): 839-843. |
[52] | Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. |
[53] | Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotechnol, 2014, 32(6): 569-576. |
[54] | Sidik SM, Huet D, Ganesan SM,et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes[J]. Cell, 2016, 166(6): 1423-1435.e12. |
[1] | XU Kai, CHEN Li, LIN Dengfeng. Advances in the treatment of inflammatory bowel disease with parasites and their agents [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(3): 407-412. |
[2] | MA Yue, ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi. Research progress on the regulation of miRNA in the infection of apicomplexan parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 749-755. |
[3] | YANG Jinting, HUANG Xiaobin, WANG Yujuan, GUO Xianguo, ZHANG Xianzheng, YANG Huijuan, ZHENG Xiaoyan. Myotis fimbriatus ectoparasite infection and the morphological and phylogenetic analysis of Nycteribiidae in Dali, Yunnan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 452-458. |
[4] | WANG Feng, WU Fan, LI Linlin, HUANG Qingqing. Prevalence of parasitic infections in wild mice in Wuhu City, Anhui Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 516-519. |
[5] | XIE Yi, WANG Ying, WANG Xu, SHI Dandan, FU Meihua, LI Chunyang, WU Weiping, DAN Bazeli, LIAO Sa, ZHANG Kaige, DENG Xueying, GUAN Yayi. Investigation of fecal parasite pathogens in domestic dogs based on high-throughput sequencing [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 325-330. |
[6] | RONG Zhi-li, SHI Ting-ting. A misdiagnosed case of brain sparganosis mansoni [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 817-820. |
[7] | XU Zhi-peng, JI Min-jun, WU Guan-ling. The toxicological and pharmacological effects of parasite-derived components on the host [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 561-571. |
[8] | LI Mei, ZHOU He-jun, YIN Jian-hai, ZHANG Li, TU Hong. Investigation on parasite density and treatment measures in malaria patients [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 379-383. |
[9] | PAN Xiao-wen, WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong. Research advances on exosome and its functions to parasitic helminths [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 390-395. |
[10] | JIANG Li, ZHANG Yao-guang, LIU Hong-xia, WANG Zhen-yu, ZHU Min, WU Huan-yu. Establishment of multiplex PCR for malaria-transmitting vector surveillance [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 159-167. |
[11] | JING Wen-wen, CHENG Xun-jia. Application and prospect of multidisciplinary new detection technology in the diagnosis of parasite infections [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 20-27. |
[12] | CAI Xuan, YANG Ya-ming, LI Ben-fu, YAN Xin-liu, PENG Jia, ZI Jin-rong, WU Fang-wei. Investigation on the prevalence of human parasitic infections in the ecoregion of southern part of Yunnan-Guangxi-Guangdong neighboring area, Yunnan Province in 2015 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 848-852. |
[13] | SONG Xiu-mei, WANG Jing-wen. Influence of nutritional metabolism of Anopheles on its transmission capability of malaria parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 617-620. |
[14] | XU Feng-yan, YANG Yong, GAO Xin, LIU Xiao-lei, WANG Yang, LIU Ming-yuan, ZHANG Yuan-yuan, BAI Xue. Advances in research on parasite proteomics of extracellular vesicles [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 526-532. |
[15] | WANG Zhen-yu, WU Huan-yu, JIANG Li, MA Xiao-jiang, ZHANG Yao-guang, HE Yan-yan, ZHU Qian. Surveillance and analysis of parasitic infection in food on market in Shanghai during 2015—2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 347-351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||