[1] | Doudna JA, Charpentier E.Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. | [2] | Sternberg SH, Doudna JA.Expanding the Biologist’s Toolkit with CRISPR-Cas9[J]. Mol Cell, 2015, 58(4): 568-574. | [3] | Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12): 5429-5433. | [4] | Mojica FJ, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria[J]. Mol Microbiol, 2000, 36(1): 244-246. | [5] | Makarova KS, Aravind L, Grishin NV, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis[J]. Nucleic Acids Res, 2002, 30(2): 482-496. | [6] | Guy CP, Majerník AI, Chong JP, et al. A novel nuclease-ATPase(Nar71) from archaea is part of a proposed thermophilic DNA repair system[J]. Nucleic Acids Res, 2004, 32(21): 6176-6186. | [7] | Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(Pt 8): 2551-2561. | [8] | Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol, 2005, 60(2): 174-182. | [9] | Pourcel C, Salvignol G, Vergnaud G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(Pt 3): 653-663. | [10] | Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. | [11] | Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. | [12] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. | [13] | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. | [14] | Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71. | [15] | Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNaseIII[J]. Nature, 2011, 471(7340): 602-607. | [16] | Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. | [17] | Kennedy EM, Cullen BR. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment[J]. Virology, 2015, 479-480: 213-220. | [18] | Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87. | [19] | Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. | [20] | Konermann S, Brigham MD, Trevino AE, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476. | [21] | Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J]. Cell, 2013, 155(7): 1479-1491. | [22] | Ren X, Sun J, Housden BE, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9[J]. Proc Natl Acad Sci USA, 2013, 110(47): 19012-19017. | [23] | 蒲元华, 张德林. 弓形虫入侵宿主机制及免疫学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(6): 480-485, 490. | [24] | Shen B, Brown KM, Lee TD, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9[J]. MBio, 2014, 5(3): e01114-e01114. | [25] | Sidik SM, Hackett CG, Tran F, et al. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9[J]. PLoS One, 2014, 9(6): e100450. | [26] | Sugi T, Kato K, Weiss LM.An improved method for introducing site-directed point mutation into the Toxoplasma gondii genome using CRISPR/Cas9[J]. Parasitol Int, 2016, 65(5 Pt B): 558-562. | [27] | Peng D, Kurup SP, Yao PY, et al. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi[J]. MBio, 2014, 6(1): e02097-e02014. | [28] | Straimer J, Lee MC, Lee AH, et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases[J]. Nat Methods, 2012, 9(10): 993-998. | [29] | McNamara CW, Lee MC, Lim CS, et al. Targeting Plasmodium PI(4)K to eliminate malaria[J]. Nature, 2013, 504(7479): 248-253. | [30] | Sollelis L, Ghorbal M, MacPherson CR, et al. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites[J]. Cell Microbiol, 2015, 17(10): 1405-1412. | [31] | Zhang WW, Matlashewski G.CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. MBio, 2015, 6(4): e00861. | [32] | Zhang C, Xiao B, Jiang Y, et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system[J]. MBio, 2014, 5(4): e01414-e01414. | [33] | 郑斌, 陆绍红. 刚地弓形虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(5): 396-400. | [34] | Jones NG, Wang Q, Sibley LD.Secreted protein kinases regulate cyst burden during chronic toxoplasmosis[J]. Cell Microbiol, 2016, 19(2): e12651. | [35] | Yang M, Zheng J, Jia H, et al. Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii[J]. Parasitology, 2016, 143(11): 1443-1449. | [36] | Zheng J, Jia H, Zheng Y.Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9[J]. Int J Parasitol, 2015, 45(2-3): 141-148. | [37] | Wang JL, Huang SY, Li TT, et al. Evaluation of the basic functions of six calcium-dependent protein kinases in Toxoplasma gondii using CRISPR-Cas9 system[J]. Parasitol Res, 2016, 115(2): 697-702. | [38] | Long S, Wang Q, Sibley LD.Analysis of noncanonical calcium-dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9[J]. Infect Immun, 2016, 84(5): 1262-1273. | [39] | Shen B, Buguliskis JS, Lee TD, et al. Functional analysis of rhomboid proteases during Toxoplasma invasion[J]. MBio, 2014, 5(5): e01795-e01714. | [40] | Stewart RJ, Tonkin CJ.Rhomboid proteases in invasion and replication of Apicomplexa[J]. Mol Microbiol, 2015, 97(2): 185-188. | [41] | Olias P, Sibley LD.Functional analysis of the role of Toxoplasma gondii nucleoside triphosphate hydrolases Ⅰ and Ⅱ in acute mouse virulence and immune suppression[J]. Infect Immun, 2016, 84(7): 1994-2001. | [42] | Behnke MS, Khan A, Sibley LD.Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker[J]. Eukaryotic Cell, 2015, 14(2): 140-148. | [43] | 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 418-424. | [44] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55. | [45] | Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system[J]. Nat Biotechnol, 2014, 32(8): 819-821. | [46] | Ng CL, Siciliano G, Lee MC, et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs[J]. Mol Microbiol, 2016, 101(3): 381-393. | [47] | Lander N, Li ZH, Niyogi S, et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment[J]. MBio, 2015, 6(4): e01012-e01015. | [48] | Vinayak S, Pawlowic MC, Sateriale A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum[J]. Nature, 2015, 523(7561): 477-480. | [49] | Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822-826. | [50] | Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827-832. | [51] | Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9): 839-843. | [52] | Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. | [53] | Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotechnol, 2014, 32(6): 569-576. | [54] | Sidik SM, Huet D, Ganesan SM,et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes[J]. Cell, 2016, 166(6): 1423-1435.e12. |
|