[1] | Weiss LM, Dubey JP.Toxoplasmosis: a history of clinical observations[J]. Int J Parasitol, 2009, 39(8): 895-901. | [2] | 吴斌, 吕芳丽. CD8+T 细胞免疫应答在刚地弓形虫感染免疫中的功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(2): 143-147. | [3] | Fox BA, Bzik DJ.De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii[J]. Nature, 2002, 415(6874): 926-929. | [4] | Fox BA, Bzik DJ.Avirulent uracil auxotrophs based on disruption of orotidine-5′-monophosphate decarboxylase elicit protective immunity to Toxoplasma gondii[J]. Infect Immun, 2010, 78(9): 3744-3752. | [5] | Fox BA, Bzik DJ, Kiah LS.Non-replicating Toxoplasma gondii reverses tumor-associated immunosuppression[J]. Onco-immunology, 2013, 2(11): e26296. | [6] | Gigley JP, Fox BA, Bzik DJ.Cell-mediated immunity to Toxoplasma gondii develops primarily by local Th1 host immune responses in the absence of parasite replication[J]. J Immunol, 2009, 182(2): 1069-1078. | [7] | Behnke MS, Fentress SJ, Mashayekhi M, et al. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18[J]. PLoS Pathog, 2012, 8(11): e1002992. | [8] | Butcher BA, Fox BA, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control[J]. PLoS Pathog, 2011, 7(9): e1002236. | [9] | Rosowski EE, Lu D, Julien L, et al. Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein[J]. J Exp Med, 2011, 208(1): 195-212. | [10] | Braun L, Brenier-Pinchart MP, Yogavel M, et al. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation[J]. J Exp Med, 2013, 210(10): 2071-2086. | [11] | Peixoto L, Chen F, Harb OS, et al. Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses[J]. Cell Host Microbe, 2010, 8(2): 208-218. | [12] | Fox BA, Sanders KL, Rommereim LM, et al. Secretion of rhoptry and dense granule effector proteins by nonreplicating Toxoplasma gondii uracil auxotrophs controls the development of antitumor immunity[J]. PLoS Genet, 2016, 12(7): e1006189. | [13] | Ravindran S, Lodoen MB, Verhelst SH, et al. 4-Bromophenacyl bromide specifically inhibits rhoptry secretion during Toxoplasma invasion[J]. PLoS One, 2009, 4(12): e8143. | [14] | Denkers EY, Butcher BA, Del RL, et al. Neutrophils, dendritic cells and Toxoplasma[J]. Int J Parasitol, 2004, 34(3): 411-421. | [15] | Johnson LL, VanderVegt FP, Havell EA. Gamma interferon-dependent temporary resistance to acute Toxoplasma gondii infection independent of CD4+ or CD8+ lymphocytes[J]. Infect Immun, 1993, 61(12): 5174-5180. | [16] | Hunter CA, Subauste CS, Van Cleave VH, et al. Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha[J]. Infect Immun, 1994, 62(7): 2818-2824. | [17] | Hemmi H, Akira S.TLR signalling and the function of dendritic cells[J]. Chem Immunol Allergy, 2005, 86: 120-135. | [18] | Bagchi A, Herrup EA, Warren HS, et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists[J]. J Immunol, 2007, 178(2): 1164-1171. | [19] | 曾治民, 何静, 刘安文. Toll样受体信号传导与炎症相关肿瘤的关系[J]. 中国癌症杂志, 2011, 21(6): 489-494. | [20] | Vonderheide RH, Flaherty KT, Khalil M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody[J]. J Clin Oncol, 2007, 25(7): 876-883. | [21] | Eliopoulos AG, Davies C, Knox PG, et al. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily[J]. Mol Cell Biol, 2000, 20(15): 5503-5515. | [22] | Conejo-Garcia JR, Benencia F, Courreges MC, et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A[J]. Nat Med, 2004, 10(9): 950-958. | [23] | Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat med, 2004, 10(9): 942-949. | [24] | Trinchieri G.Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity[J]. Annu Rev Immunol, 1995, 13: 251-276. | [25] | Mashayekhi M, Sandau MM, Dunay IR, et al. CD8α(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites[J]. Immunity, 2011, 35(2): 249-259. | [26] | Airoldi I, Di Carlo E, Cocco C, et al. Endogenous IL-12 triggers an antiangiogenic program in melanoma cells[J]. Proc Natl Acad Sci USA, 2007, 104(10): 3996-4001. | [27] | Murugaiyan G, Saha B.Protumor vs antitumor functions of IL-17[J]. J Immunol, 2009, 183(7): 4169-4175. | [28] | Jemal A, Siegel R, Ward E, et al. Cancer statistics[J]. CA Cancer J Clin, 2008, 58(2): 71-96. | [29] | Schreiber RD, Old LJ, Smyth MJ.Cancer immunoediting: integrating immunity′s roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570. | [30] | Huarte E, Cubillos-Ruiz JR, Nesbeth YC, et al. Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity[J]. Cancer Res, 2008, 68(18): 7684-7691. | [31] | Baird JR, Fox BA, Sanders KL, et al. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment[J]. Cancer Res, 2013, 73(13): 3842-3851. | [32] | Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC, et al. In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppres-sive to immunostimulatory cells[J]. Cancer Res, 2009, 69(18): 7329-7337. | [33] | Palucka K, Banchereau J.Cancer immunotherapy via dendritic cells[J]. Nat Rev Cancer, 2012, 12(4): 265-277. | [34] | Benson A, Murray S, Divakar P, et al. Microbial infection induced expansion of effector T cells overcomes the suppressive effects of regulatory T cells via an IL-2 deprivation mechanism[J]. J Immunol, 2012, 188(2): 800-810. | [35] | Komita H, Zhao X, Katakam AK, et al. Conditional interleukin-12 gene therapy promotes safe and effective antitumor immunity[J]. Cancer gene ther, 2009, 16(12): 883-891. | [36] | Wilson DC, Matthews S, Yap GS.IL-12 signaling drives CD8+ T cell IFN-gamma production and differentiation of KLRG1+ effector subpopulations during Toxoplasma gondii infection[J]. J Immunol, 2008, 180(9): 5935-5945. | [37] | Zou W, Restifo NP.T(H)17 cells in tumour immunity and immunotherapy[J]. Nat Rev Immunol, 2010, 10(4): 248-256. [38] Murphy TL, Tussiwand R, Murphy KM. Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks[J]. Nat Rev Immunol, 2013, 13(7): 499-509. | [39] | Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii[J]. J Immunol, 1994, 153(6): 2533-2543. | [40] | Bougdour A, Durandau E, Brenier-Pinchart MP, et al. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression[J]. Cell Host Microbe, 2013, 13(4): 489-500. | [41] | 吕文超, 崔云甫. 胰腺癌流行病学和病因学研究进展[J]. 世界华人消化杂志, 2011, 19(27): 2805-2809. | [42] | Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer[J]. Cancer Cell, 2012, 21(6): 822-835. | [43] | Sideras K, Braat H, Kwekkeboom J, et al. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies[J]. Cancer Treat Rev, 2014, 40(4): 513-522. | [44] | Panni RZ, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages to combat cancer[J]. Immunotherapy, 2013, 5(10): 1075-1087. | [45] | Sanders KL, Fox BA, et al. Attenuated Toxoplasma gondii stimulates immunity to pancreatic cancer by manipulation of myeloid cell populations[J]. Cancer Immunol Res, 2015, 3(8): 891-901. | [46] | Pützer BM, Rödicker F, Hitt MM, et al. Improved treatment of pancreatic cancer by IL-12 and B7.1 costimulation: antitumor efficacy and immunoregulation in a nonimmunogenic tumor model[J]. Mol Ther, 2002, 5(4): 405-412. | [47] | Zaidi MR, Merlino G.The two faces of interferon-γ in cancer[J]. Clin Cancer Res, 2011, 17(19): 6118-6124. | [48] | Sanders KL, Fox BA, Bzik DJ.Attenuated Toxoplasma gondii therapy of disseminated pancreatic cancer generates long-lasting immunity to pancreatic cancer[J]. Oncoimmunology, 2016, 5(4): e1104447. | [49] | Wang J, Saffold S, Cao X, et al. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines[J]. J Immunol, 1998, 161(10): 5516-5524. | [50] | Baird JR, Byrne KT, Lizotte PH, et al. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge[J]. J Immunol, 2013, 190(1): 469-478. |
|