[1] | 康乐, 李毅, 程功, 等. 虫媒病毒感染传播及跨界免疫适应机制[J]. 中国科学基金, 2023, 37(6): 1011-1020. | | Kang L, Li Y, Cheng G, et al. Infection, transmission, and cross-kingdom immune adaption of arboviruses[J]. Bull Natl Nat Sci Found China, 2023, 37(6): 1011-1020. (in Chinese) | [2] | Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases[J]. Nat Microbiol, 2019, 4(1): 20-34. | [3] | 韩青池, 杨丽敏, 郭云海, 等. 斯氏按蚊在我国的分布[J]. 上海预防医学, 2025, 37(02): 120-124. | | Han QC, Yang LM, Guo YH, et al. Distribution of Anopheles stephensi in China[J]. Shanghai J Prev Med, 2025, 37(2): 120-124. (in Chinese) | [4] | Mishra DP, Sahu R, Sahu PK, et al. Repurposing sulfonamide-scaffolds for enhanced and sustainable malaria therapy[J]. Future Med Chem, 2025, 17(11): 1315-1335. | [5] | Girard M, Nelson CB, Picot V, et al. Arboviruses: A global public health threat[J]. Vaccine, 2020, 38(24): 3989-3994. | [6] | Chandel A, De Beaubien NA, Ganguly A, et al. Thermal infrared directs host-seeking behaviour in Aedes aegypti mosquitoes[J]. Nature, 2024, 633(8030): 615-623. | [7] | Sarker R, Roknuzzaman ASM, Haque MA, et al. Upsurge of dengue outbreaks in several WHO regions: Public awareness, vector control activities, and international collaborations are key to prevent spread[J]. Health Sci Rep, 2024, 7: e2034. | [8] | Zhu GH, Xiao JP, Liu T, et al. Spatiotemporal analysis of the dengue outbreak in Guangdong Province, China[J]. BMC Infect Dis, 2019, 19(1): 493. | [9] | 郭晓芳, 容艺函, 黄兴云, 等. 云南省2023年国家级登革热监测点登革热病原监测分析[J]. 中国热带医学, 2025, 25(2): 141-148. | | Guo XF, Rong YH, Huang XY, et al. Analysis on etiological surveillance of dengue fever cases at national dengue monitoring sites in Yunnan Province in 2023[J]. Chin Trop Med, 2025, 25(2): 141-148. (in Chinese) | [10] | 徐雨娟, 徐玉洁, 蒋梦玲, 等. 2023年广州与西双版纳输入性登革病毒溯源与进化变异特征分析[J]. 传染病信息, 2024, 37(5): 468-475. | | Xu YJ, Xu YJ, Jiang ML, et al. Analysis of the source tracing and evolutionary mutation characteristics of imported dengue viruses in Guangzhou and Xishuangbanna in 2023[J]. Infect Dis Inf, 2024, 37(5): 468-475. (in Chinese) | [11] | 李世豪, 赵忠辉, 岳玉娟, 等. 重点流行地区(云南和广东省)登革热防控现状、存在问题及应对策略措施研究[J]. 中国媒介生物学及控制杂志, 2023, 34(6): 754-760. | | Li SH, Zhao ZH, Yue YJ, et al. Research on the current status, problems, and response strategies and measures for dengue fever in key endemic areas (Yunnan and Guangdong Provinces), China[J]. Chin J Vector Biol Control, 2023, 34(6): 754-760. (in Chinese) | [12] | Zink FA, Tembrock LR, Timm AE, et al. A real-time PCR assay for rapid identification of Tuta absoluta (Lepidoptera∶Gelechiidae)[J]. J Econ Entomol, 2020, 113(3): 1479-1485. | [13] | Rettinger A, Krupka I, Grünwald K, et al. Leptospira spp. strain identification by malditofms is an equivalent tool to 16s rRNA gene sequencing and multi locus sequence typing (mlst)[J]. BMC Microbiol, 2012, 12: 185. | [14] | Doi H, Takahara T, Minamoto T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species[J]. Environ Sci Technol, 2015, 49(9): 5601-5608. | [15] | Espindola AS, Cardwell K, Martin FN, et al. A step towards validation of high-throughput sequencing for the identification of plant pathogenic oomycetes[J]. Phytopathology, 2022, 112(9): 1859-1866. | [16] | Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. | [17] | 马玉楠, 邹丽容, 梁源浩, 等. RT-PCR/CRISPR-Cas12a快速检测和区分SARS-CoV-2 Omicron BA. 4/5变异株[J]. 南方医科大学学报, 2023, 43(4): 516-526. | | Ma YN, Zou LR, Liang YH, et al. Rapid detection and genotyping of SARS-CoV-2 Omicron BA.4/5 variants using a RTPCR and CRISPR-Cas12a-based assay[J]. J South Med Univ, 2023, 43(4): 516-526. (in Chinese) | [18] | 田道明, 周子萱, 杨迎澳, 等. CRISPR-Cas12a介导的适配体荧光传感器快速检测金黄色葡萄球菌[J]. 中国医药科学, 2024, 14(21): 139-143. | | Tian DM, Zhou ZX, Yang YA, et al. Rapid detection of Staphylococcus aureus by aptamer fluorescence sensor mediated by CRISPR-Cas12a[J]. China Med Pharm, 2024, 14(21): 139-143. (in Chinese) | [19] | 章太婵, 车玉传, 梁雪雁, 等. RT-RAA联合CRISPR/Cas12a快速检测新型冠状病毒方法的建立与评价[J]. 临床检验杂志, 2024, 42(4): 246-251. | | Zhang TC, Che YC, Liang XY, et al. Establishment and evaluation of RT-RAA combined with CRISPR/Cas12a for rapid detection of SARS-CoV-2[J]. Chin J Clin Lab Sci, 2024, 42(4): 246-251. (in Chinese) | [20] | 谭涅, 朱锋, 丁艳, 等. 硝喹对斯氏按蚊体内不同时期约氏疟原虫发育的影响[J]. 中国血吸虫病防治杂志, 2022, 34(1): 85-88, 101. | | Tan N, Zhu F, Ding Y, et al. Effects of nitroquine on the development of Plasmodium yoelii at different stages in Anopheles stephensi[J]. Chin J Schisto Control, 2022, 34(1): 85-88, 101. (in Chinese) | [21] | 王雅娜, 于艳雪, 田茜, 等. 基于RPA-CRISPR/Cas12a的美国白蛾可视化快速检测新方法[J]. 环境昆虫学报, 2024, 46(5): 1051-1058. | | Wang YN, Yu YX, Tian Q, et al. New and rapid visual detection assay for Hyphantria cunea Drury based on recombinase polymerase amplification and CRISPR/Cas12a[J]. J Environ Entomol, 2024, 46(5): 1051-1058. (in Chinese) | [22] | Shashank PR, Parker BM, Rananaware SR, et al. CRISPR-based diagnostics detects invasive insect pests[J]. Mol EcolResour, 2024, 24(1): e13881. | [23] | Deng WX, Feng SQ, Stejskal V, et al. An advanced approach for rapid visual identification of Liposcelis bostrychophila (Psocoptera∶Liposcelididae) based on CRISPR/Cas12a combined with RPA[J]. J Econ Entomol, 2023, 116(5): 1911-1921. | [24] | Alon DM, Partosh T, Burstein D, et al. Rapid and sensitive on-site genetic diagnostics of pest fruit flies using CRISPR-Cas12a[J]. Pest Manag Sci, 2023, 79(1): 68-75. | [25] | Wei HG, Li J, Liu YQ, et al. Rapid and ultrasensitive detection of Plasmodium spp. parasites via the RPA-CRISPR/Cas12a platform[J]. ACS Infect Dis, 2023, 9(8): 1534-1545. | [26] | Cunningham CH, Hennelly CM, Lin JT, et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping[J]. EBio Medicine, 2021, 68: 103415. | [27] | Zhang AP, Sun B, Zhang JM, et al. CRISPR/Cas12a coupled with recombinase polymerase amplification for sensitive and specific detection of Aphelenchoides besseyi[J]. Front Bioeng Biotechnol, 2022, 10: 912959. | [28] | Cherkaoui D, Mesquita SG, Huang D, et al. CRISPR-assisted test for Schistosoma haematobium[J]. Sci Rep, 2023, 13(1): 4990. | [29] | 王皓璐, 赵连静, 陈秀琴, 等. 基于RPA-CRISPR/Cas12a的异尖线虫快速可视化检测方法[J]. 中国兽医科学, 2024, 54(6):735-741. | | Wang HL, Zhao LJ, Chen XQ, et al. RPA-CRISPR/Cas12a-based visual and rapid detection of Anisakis[J]. Chin J Vet Sci, 2024, 54(6): 735-741. (in Chinese) | [30] | 徐国磊, 冯延叶, 胡薇. 基于RPA-CRISPR/Cas12a技术的日本血吸虫特异性核酸片段快速可视化检测方法的建立和应用评估[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 608-614. | | Xu GL, Feng YY, Hu W. Establishment and application evaluation of a rapid visualization detection method for Schistosoma japonicum specific nucleic acid fragments based on RPA-CRISPR/Cas12a technology[J]. Chin J ParasitolParasit Dis, 2024, 42(5): 608-614. (in Chinese) | [31] | Huang FQ, Li X, Zhou YL, et al. Optimization of CRISPR/Cas12a detection assay and its application in the detection of Echinococcus granulosus[J]. Vet Parasitol, 2024, 331: 110276. | [32] | 闫书宁, 杨汉银, 蔡玉春, 等. 基于RPA-CRISPR/Cas12a技术的十二指肠钩虫核酸检测方法的建立和评价[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(6): 748-755. | | Yan SN, Yang HY, Cai YC, et al. Establishment and assessment of nucleic acid detection method for Ancylostoma duodenale based on RPA-CRISPR/Cas12a technology[J]. Chin J Parasitol Parasit Dis, 2024, 42(6): 748-755. (in Chinese) | [33] | 徐蛟, 王英丽, 王莹, 等. 基于RAA-CRISPR/Cas12a快速检测尼帕病毒方法的建立[J]. 中国动物检疫, 2023, 40(10): 95-99. | | Xu J, Wang YL, Wang Y, et al. Establishment of a method for rapid detection of NiV based on RAA-CRISPR/Cas12a[J]. China Anim Health Insp, 2023, 40(10): 95-99. (in Chinese) | [34] | Zhang QL, Yu GL, Ding XL, et al. A rapid simultaneous detection of duck hepatitis A virus 3 and novel duck reovirus based on RPA CRISPR Cas12a/Cas13a[J]. Int J Biol Macromol, 2024, 274(P1): 133246. | [35] | Broughton JP, Deng XD, Yu GX, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nat Biotechnol, 2020, 38(7): 870-874. | [36] | Welch NL, Zhu ML, Hua C, et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants[J]. Nat Med, 2022, 28(5): 1083-1094. |
|