中国寄生虫学与寄生虫病杂志 ›› 2025, Vol. 43 ›› Issue (4): 511-517.doi: 10.12140/j.issn.1000-7423.2025.04.010

• 论著 • 上一篇    下一篇

安徽省不同地区中华按蚊种群的遗传特征分析

王淑琪1()(), 姜静静1, 吕晓凤1, 储琴书1, 许娴1, 陆雪纯1, 刘子健1, 张滔1,*()(), 尹建海2,*()()   

  1. 1 安徽省疾病预防控制中心安徽省预防医学科学院,安徽省血吸虫病防治研究所安徽 合肥 230601
    2 中国疾病预防控制中心寄生虫病预防控制所(国家热带病研究中心)传染病溯源预警与智能决策全国重点实验室,国家卫生健康委员会寄生虫病原与媒介生物学重点实验室,世界卫生组织热带病合作中心,科技部国家级热带病国际联合研究中心上海 200025
  • 收稿日期:2024-12-31 修回日期:2025-03-22 出版日期:2025-08-30 发布日期:2025-10-09
  • 通讯作者: 张滔(ORCID:0000-0001-7034-3402),男,硕士,副主任医师,从事寄生虫病防治工作。E-mail:ahcdczt@126.com;尹建海(ORCID:0000-0003-1333-8732),男,博士,研究员,从事寄生虫病防治与研究工作。E-mail:yinjh@nipd.chinacdc.cn
  • 作者简介:王淑琪(ORCID:0009-0008-8181-348X),女,硕士,主管技师,从事疟疾防治工作。E-mail:wangshuqi@ahcdc.com.cn
  • 基金资助:
    安徽省公共卫生研究院青年科研项目(JKQN20230107);上海市加强公共卫生体系建设三年行动计划(2023—2025年)优秀学科带头人项目(GWVI-11.2-XD34)

Genetic structure characteristics of Anopheles sinensis populations in different regions of Anhui Province

WANG Shuqi1()(), JIANG Jingjing1, LV Xiaofeng1, CHU Qinshu1, XU Xian1, LU Xuechun1, LIU Zijian1, ZHANG Tao1,*()(), YIN Jianhai2,*()()   

  1. 1 Anhui Provincial Center for Disease Control and Prevention, Anhui Provincial Academy of Preventive Medicine, Anhui Provincial Institute of Schistosomiasis Control, Hefei 230601, Anhui, China
    2 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; NHC Key Laboratory on Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
  • Received:2024-12-31 Revised:2025-03-22 Online:2025-08-30 Published:2025-10-09
  • Contact: E-mail: ahcdczt@126.com; yinjh@nipd.chinacdc.cn
  • Supported by:
    Youth Foundation of Public Health Research Institute of Anhui Province(JKQN20230107);Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai (2023-2025) Principal Investigator Project(GWVI-11.2-XD34)

摘要:

目的 了解安徽省不同生态区域中华按蚊种群遗传多样性、遗传分化及系统发育关系。方法 2023—2024年,分别在长江以南、江淮之间和淮河以北等3个生态区内,随机选取黄山区、南陵县、肥东县、定远县、濉溪县和固镇县等6个县(区)为采集点捕捉按蚊成蚊。经过形态学鉴定后,提取按蚊基因组DNA,PCR扩增核糖体DNA内转录间隔区2(rDNA-ITS2)和线粒体细胞色素c氧化酶亚基Ⅰ(COⅠ)基因,扩增产物经双向测序后,将获得序列在美国国立生物技术信息中心(NCBI)上进行BLAST比对。使用MEGA11软件对所得序列进行比对分析,计算各种群间的遗传距离,并构建系统进化树;用DnaSP 5软件计算中华按蚊种群的多态性相关指数,并进行错配分析;用Arlequin 3.5.2.2软件进行分子变异分析(AMOVA)和中性检验,计算遗传分化FST值和基因交流Nm值,并使用SPSS 18.0.0软件绘制散点图,对种群间的地理距离与遗传距离进行相关性检验。结果 共获得中华按蚊样品300只。PCR扩增rDNA-ITS2序列后,在约490 bp处出现特异性条带,与中华按蚊(GenBank登录号:MG816544.1)条带大小一致。PCR扩增COⅠ序列后,经BLAST比对,与中华按蚊序列一致性为99%。COⅠ基因序列中A + T含量(68.8%)高于G + C含量(31.1%),具有明显的AT偏向性。多态性分析结果显示,共发现多态位点129个,有204种单倍型。其中特有的单倍型166个,共享的单倍型38个。3个生态区COⅠ基因序列均检测出的单倍型有Hap_11、Hap_12、Hap_15、Hap_26、Hap_38,其中Hap_26共享的种群最多,在6个县(区)中均有出现。单倍型多样性为0.994,核酸多样性为0.010 1。6个县(区)中多态位点数、单倍型、单倍型多样性、核酸多样性最高的均为南陵县。AMOVA结果显示,6个县(区)中华按蚊的种群内变异率为97.5%,种群间变异率为2.5%,差异有统计学意义(P < 0.01);FST值均 < 0.1,Nm值均 > 1;Tajima’s D值均为负值,其中固镇县、黄山区和南陵县的Tajima’s D值的P < 0.05, Fu’s Fu检验也支持Tajima’s D的检验结果。中华按蚊种群的错配分布均呈现出明显的多峰结构。遗传距离和地理距离相关性分析结果显示,6个县(区)中华按蚊的遗传距离和地理距离间无相关性(r2 = 0.109,P > 0.05)。系统进化树结果显示,6个县(区)中华按蚊未出现地域性聚集。结论 安徽省不同生态区域中华按蚊种群遗传多态性高,种群间基因交流充分,未产生明显的遗传分化,但近期呈现出种群扩张迹象。

关键词: 中华按蚊, 线粒体, 细胞色素c氧化酶亚基因Ⅰ, 多态性, 系统进化, 安徽省

Abstract:

Objective To investigate the genetic diversity, genetic differentiation and phylogenetic relationships of Anopheles sinensis populations in different ecological regions of Anhui Provinc. Methods Adult An. mosquitoes were captured from Huangshan District, Nanling County, Feidong County, Dingyuan County, Suixi County and Guzhen County that were randomly selected from three ecological regions of north of the Yangtze River, areas between the Yangtze River and Huaihe River and north of the Huaihe River from 2023 to 2024. Following morphological identification, genomic DNA was extracted from mosquitoes, and the ribosomal DNA internal transcribed spacer 2 (rDNA-ITS2) and mitochondrial cytochrome c oxidase subunitⅠ(COⅠ) genes were amplified using PCR assay. Following bidirectional sequencing of the amplified products, the yielded sequences were subjected to BLAST alignment in the National Center for Biotechnology Information (NCBI). The obtained sequences were aligned using the software MEGA 11. The inter-population genetic distance was calculated, and phylogenetic trees were built. The polymorphism information content of An. sinensis populations was calculated using the software DnaSP 5 and mismatch analysis was performed. Analysis of molecular variance (AMOVA) and neutrality tests were performed using the software Arlequin 3.5.2.2, and the genetic differentiation (FST) and gene flow (Nm) values were calculated. In addition, the SPSS 18.0.0 software was used to generate scatter plots and examine the correlation between inter-population geographical distance and genetic distance. Results A total of 300 An. sinensis samples were obtained. After PCR amplification of the rDNA-ITS2 sequence, a specific band appeared at approximately 490 bp in length, which was consistent with the size of An. sinensis (GenBank accession number: MG816544.1). Following PCR amplification of the COⅠsequence, BLAST alignment showed that the sequence had a 99% identity with that of An. sinensis. The A + T content (68.8%) was higher than the G + C content (31.1%) in the COⅠgene sequence, showing a remarkable AT bias. A total of 129 polymorphic sites and 204 haplotypes were identified, including 166 unique haplotypes and 38 shared haplotypes. The haplotypes Hap_11, Hap_12, Hap_15, Hap_26, and Hap_38 were detected in the COⅠgene sequences of mosquitoes from all three ecological regions, with Hap_26 shared by the most populations and present in all six counties (districts). The haplotype diversity was 0.994, and the nucleotide diversity was 0.010 1. Among the six counties (districts), Nanling County had the highest values in terms of numbers of polymorphic sites and haplotypes, haplotype diversity, and nucleotide diversity. The results of AMOVA showed that the intra-population variation of An. sinensis was 97.5% in six counties (districts), and the inter-population variation was 2.5% (P < 0.01). The FST values of An. sinensis were all < 0.1 in six counties (districts), and the Nm values were all > 1. The Tajima’s D values of An. sinensis populations were all negative in six counties (districts), with P values of < 0.05 for Tajima’s D values in Guzhen County, Huangshan District, and Nanling County, and the Fu’s Fu test also supported the results of Tajima’s D test. The mismatch distribution of An. sinensis populations all showed an obvious multimodal structure in six counties (districts). In addition, there was no correlation between the genetic distance and geographical distance of An. sinensis collected from six counties (districts) (r² = 0.109, P > 0.05). Phylogenetic analysis revealed no geographical clusters of An. sinensis collected from the six counties (districts). Conclusion There are high genetic polymorphisms, sufficient intra-population gene flow and no remarkable genetic differentiation in An. sinensis populations in different ecological regions of Anhui Province; however, population expansion has been identified recently.

Key words: Anopheles sinensis, Mitochondrion, Cytochrome c oxidase subunitⅠ, Polymorphism, Systematic evolution, Anhui Province

中图分类号: