中国寄生虫学与寄生虫病杂志 ›› 2024, Vol. 42 ›› Issue (3): 389-398.doi: 10.12140/j.issn.1000-7423.2024.03.016
收稿日期:
2024-01-29
修回日期:
2024-05-14
出版日期:
2024-06-30
发布日期:
2024-07-16
通讯作者:
*董文鸽(1976—),女,博士,研究员,从事病原生物学研究。E-mail:dongwenge2740@sina.com
作者简介:
林小霞(1999—),女,硕士研究生,从事病原生物学研究。E-mail:xiaoxia8769@163.com
基金资助:
Received:
2024-01-29
Revised:
2024-05-14
Online:
2024-06-30
Published:
2024-07-16
Supported by:
摘要:
蚤亚科(Pulicinae)隶属于蚤目(Siphonaptera)蚤总科(Pulicoidea)蚤科(Pulicidae), 是啮齿动物和猫犬常见的嗜血性体外寄生虫。已测定的蚤亚科共3属5种(猫栉首蚤、犬栉首蚤、东洋栉首蚤、印鼠客蚤和人蚤),其线粒体基因组的结构特征和变异情况具有以下特点:线粒体基因组保留了节肢动物典型的排列模式,未发生基因缺失、增加和重排现象;AT含量较高,且AT-偏斜和GC-偏斜均为负值,与大多数全变态类昆虫一样,密码子使用度具有明显的偏好性;人蚤的丝氨酸转运RNA(trnS1)呈典型的三叶草结构,其余物种与后生动物一样trnS1缺失D-臂,且5种蚤亚科物种的trnS1以UCU为反密码子代替了常见的GCU;蚤亚科控制区偏大,最大可达7 kb以上,主要以二核苷酸重复为主,NADH脱氢酶亚基4(nad4)~nad4L之间存在7 bp的保守重叠区,与多数全变态类昆虫一致。本文以期对今后蚤亚科在全变态类昆虫中的演化提供参考。
中图分类号:
林小霞, 董文鸽. 蚤亚科线粒体基因组研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 389-398.
LIN Xiaoxia, DONG Wenge. Research advances on Pulicinae mitochondrial genomes[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2024, 42(3): 389-398.
表2
蚤亚科昆虫线粒体基因组的碱基组成和偏斜
区域 | 特点 | 猫栉首蚤 | 犬栉首蚤 | 东洋栉首蚤 | 印鼠客蚤 | 人蚤 |
---|---|---|---|---|---|---|
Mt-total | AT含量/% | 83.1 | 78.5 | 83.2 | 82.8 | 80.0 |
AT-偏斜 | -0.044 | -0.017 | -0.051 | -0.01 | -0.027 | |
GC-偏斜 | -0.23 | -0.182 | -0.258 | -0.221 | -0.146 | |
PCG | AT含量/% | 80.2 | 79.2 | 80.0 | 80.3 | 78.0 |
AT-偏斜 | -0.143 | -0.147 | -0.137 | -0.119 | -0.146 | |
GC-偏斜 | 0.043 | 0.04 | 0.01 | 0.039 | 0.039 | |
PCG-1st | AT含量/% | 75.4 | 75.2 | 75.3 | 75.6 | 72.5 |
AT-偏斜 | -0.032 | -0.032 | -0.022 | 0.008 | -0.035 | |
GC-偏斜 | 0.202 | 0.196 | 0.188 | 0.207 | 0.231 | |
PCG-2st | AT含量/% | 70.7 | 70.5 | 70.5 | 72.0 | 69.6 |
AT-偏斜 | -0.39 | -0.392 | -0.395 | -0.365 | -0.402 | |
GC-偏斜 | -0.07 | -0.071 | -0.069 | -0.07 | -0.089 | |
PCG-3st | AT含量/% | 94.4 | 92.0 | 94.2 | 93.3 | 92.1 |
AT-偏斜 | -0.047 | -0.052 | -0.036 | -0.033 | -0.04 | |
GC-偏斜 | -0.063 | -0.037 | -0.352 | -0.121 | -0.136 |
[1] | Wu HY. Fauna Sinica Insecta Siphonaptera[M]. Beijing: Science Press, 2007: 135-136. (in Chinese) |
(吴厚永. 中国动物志昆虫纲蚤目[M]. 北京: 科学出版社, 2007: 135-136.) | |
[2] | Bitam I, Dittmar K, Parola P, et al. Fleas and flea-borne diseases[J]. Int J Infect Dis, 2010, 14(8): e667-e676. |
[3] | Moore C, Lashnits E, Neupane P, et al. Feeding on a Bartonella henselae infected host triggers temporary changes in the Ctenocephalides felis microbiome[J]. Pathogens, 2023, 12(3): 366. |
[4] | Rajamannar V, Govindarajan R, Kumar A, et al. A review of public health important fleas (Insecta, Siphonaptera) and flea-borne diseases in India[J]. J Vector Borne Dis, 2022, 59(1): 12-21. |
[5] | Yang RF. Plague: recognition, treatment, and prevention[J]. J Clin Microbiol, 2018, 56(1): e01519-e01517. |
[6] | Blagburn BL, Dryden MW. Biology, treatment, and control of flea and tick infestations[J]. Vet Clin North Am Small Anim Pract, 2009, 39(6): 1173-1200, viii. |
[7] |
Otranto D, Wall R. New strategies for the control of arthropod vectors of disease in dogs and cats[J]. Med Vet Entomol, 2008, 22(4): 291-302.
doi: 10.1111/j.1365-2915.2008.00741.x pmid: 18785935 |
[8] | Simon C, Buckley TR, Frati F, et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA[J]. Annu Rev Ecol Evol Syst, 2006, 37: 545-579. |
[9] | Friedman JR, Nunnari J. Mitochondrial form and function[J]. Nature, 2014, 505(7483): 335-343. |
[10] |
Boore JL. Animal mitochondrial genomes[J]. Nucleic Acids Res, 1999, 27(8): 1767-1780.
doi: 10.1093/nar/27.8.1767 pmid: 10101183 |
[11] | Li H, Leavengood JM Jr, Chapman EG, et al. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs[J]. Proc Biol Sci, 2017, 284(1862): 20171223. |
[12] | Desalle R, Schierwater B, Hadrys H. MtDNA: the small workhorse of evolutionary studies[J]. Front Biosci, 2017, 22(5): 873-887. |
[13] |
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annu Rev Entomol, 2014, 59: 95-117.
doi: 10.1146/annurev-ento-011613-162007 pmid: 24160435 |
[14] | Sun JN, Chen T, Dong WG. Sequencing and analysis of the mitochondrial genome of Hoplopleura edentula[J]. Chin J Parasito Parasit Dis, 2022, 40(2): 194-210. (in Chinese) |
(孙佳宁, 陈婷, 董文鸽. 缺齿甲胁虱线粒体基因组测序与分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 194-210.)
doi: 10.12140/j.issn.1000-7423.2022.02.010 |
|
[15] | Verhoeve VI, Plumer ML, Driscoll TP, et al. The complete mitochondrial genome of the cat flea, Ctenocephalides felis[J]. Mitochondrial DNA B Resour, 2020, 5(3): 3422-3424. |
[16] | Zhang Y, Fu YT, Yao CQ, et al. Mitochondrial phylogenomics provides insights into the taxonomy and phylogeny of fleas[J]. Parasit Vectors, 2022, 15(1): 223. |
[17] | Wei FR, Jia XK, Wang Y, et al. The complete mitochondrial genome of Xenopsylla cheopis (Siphonaptera ∶ Pulicidae)[J]. Mitochondrial DNA B Resour, 2022, 7(1): 170-171. |
[18] | Chen Q, Chen L, Liao CQ, et al. Comparative mitochondrial genome analysis and phylogenetic relationship among lepidopteran species[J]. Gene, 2022, 830: 146516. |
[19] | Liu MY, Wu TT, Ju H, et al. Phylogenetic analysis of mitochondrial genome of Tabanidae (Diptera ∶ Tabanidae) reveals the present status of Tabanidae classification[J]. Insects, 2022, 13(8): 695. |
[20] | Fan XL. Comparative mitochondrial genomics and phylogenesis of Vespa[D]. Xi’an: Northwest University, 2018: 1-4. (in Chinese) |
(范旭蕾. 长黄胡蜂属比较线粒体基因组学与系统发育研究[D]. 西安: 西北大学, 2018: 1-4.) | |
[21] |
Francino MP, Ochman H. Strand asymmetries in DNA evolution[J]. Trends Genet, 1997, 13(6): 240-245.
pmid: 9196330 |
[22] | Wei SJ, Shi M, Chen XX, et al. New views on strand asymmetry in insect mitochondrial genomes[J]. PLoS One, 2010, 5(9): e12708. |
[23] | Yang YX, Xu SX, Xu JX, et al. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects[J]. PLoS One, 2014, 9(6): e99120. |
[24] | Sang LQ. Codon preference and evolution of insect mitochondria lgenes[D]. Xi’an: Shaanxi Normal University, 2019: 19-21. (in Chinese) |
(桑丽琴. 昆虫线粒体基因密码子的偏好性及其演化[D]. 西安: 陕西师范大学, 2019: 19-21.) | |
[25] |
Macey JR, Larson A, Ananjeva NB, et al. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome[J]. Mol Biol Evol, 1997, 14(1): 91-104.
pmid: 9000757 |
[26] | Liu YQ, Li YP, Pan MH, et al. The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera ∶ Saturniidae)[J]. Acta Biochim Biophys Sin, 2008, 40(8): 693-703. |
[27] |
Hassanin A, Léger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences[J]. Syst Biol, 2005, 54(2): 277-298.
pmid: 16021696 |
[28] | Paul P, Malakar AK, Chakraborty S. Codon usage vis-a-vis start and stop Codon context analysis of three dicot species[J]. J Genet, 2018, 97(1): 97-107. |
[29] | Gupta S, Singh R. Comparative study of codon usage profiles of Zingiber officinale and its associated fungal pathogens[J]. Mol Genet Genomics, 2021, 296(5): 1121-1134. |
[30] |
Jermiin LS, Graur D, Lowe RM, et al. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes[J]. J Mol Evol, 1994, 39(2): 160-173.
pmid: 7932780 |
[31] |
Clary DO, Wolstenholme DR. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code[J]. J Mol Evol, 1985, 22(3): 252-271.
pmid: 3001325 |
[32] |
Yokobori S, Pääbo S. Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNA (Tyr)[J]. J Mol Biol, 1997, 265(2): 95-99.
pmid: 9020972 |
[33] | Zheng TC, Li P, Li LL, et al. Research advances in and prospects of ornamental plant genomics[J]. Hortic Res, 2021, 8(1): 65. |
[34] | Zhou JW, Zhang S, Wang J, et al. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution[J]. Sci Rep, 2021, 11(1): 9471. |
[35] | Zheng BY. Comparative mitogenomics and phylogenetics of Ichneumonidae (Hymenoptera ∶ Aculeata)[D]. Zhejiang: Zhejiang University, 2022: 19-20. (in Chinese) |
(郑博颖. 姬蜂科昆虫比较线粒体基因组及系统发育研究[D]. 浙江: 浙江大学, 2022: 19-20.) | |
[36] |
Zhang M, Nie XP, Cao TW, et al. The complete mitochondrial genome of the butterfly Apatura metis (Lepidoptera ∶ Nymphalidae)[J]. Mol Biol Rep, 2012, 39(6): 6529-6536.
doi: 10.1007/s11033-012-1481-7 pmid: 22311013 |
[37] |
Wolstenholme DR. Animal mitochondrial DNA: structure and evolution[J]. Int Rev Cytol, 1992, 141: 173-216.
pmid: 1452431 |
[38] |
Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization[J]. Genetics, 1993, 133(1): 97-117.
doi: 10.1093/genetics/133.1.97 pmid: 8417993 |
[39] |
Stewart JB, Beckenbach AT. Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata[J]. Mol Phylogenet Evol, 2003, 26(3): 513-526.
pmid: 12644408 |
[40] | Yona AH, Bloom-Ackermann Z, Frumkin I, et al. tRNA genes rapidly change in evolution to meet novel translational demands[J]. Elife, 2013, 2: e01339. |
[41] |
Masta SE, Boore JL. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes[J]. Mol Biol Evol, 2008, 25(5): 949-959.
doi: 10.1093/molbev/msn051 pmid: 18296699 |
[42] | Cui P, Ji R, Ding F, et al. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of Camelidae[J]. BMC Genomics, 2007, 8: 241. |
[43] | Mei Y, Yue QY, Jia FL. Research progress on mitochondrial genomes of Dipteral insect[J]. J Environ Entomol, 2012, 34(4): 497-503. (in Chinese) |
(梅琰, 岳巧云, 贾凤龙. 双翅目昆虫线粒体基因组研究进展[J]. 环境昆虫学报, 2012, 34(4): 497-503.) | |
[44] | Yang J, Zhang RS, Chen DB, et al. The complete mitochondrial genome of Antheraea proylei strain In981 (Lepidoptera ∶ Saturniidae)[J]. Mitochondrial DNA B Resour, 2019, 4(2): 2264-2265. |
[45] |
Vobis M, D’Haese J, Mehlhorn H, et al. Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers[J]. Parasitol Res, 2004, 94(3): 219-226.
pmid: 15340839 |
[46] | Hu L, Zhao YE, Yang YN, et al. Molecular identification, transcriptome sequencing and functional annotation of Pulex irritans[J]. Acta Parasitol, 2021, 66(2): 605-614. |
[47] | Lu L, Wu HY. The molecular phylogeny of some species of the bidentatiformis group of the genus Neopsylla based on 16s rRNA gene[J]. Acta Entomol Sin, 2001, 44(4): 548-554. (in Chinese) |
(鲁亮, 吴厚永. 基于16s rRNA序列的新蚤属二齿新蚤种团部分种类的分子系统发育关系[J]. 昆虫学报, 2001, 44(4): 548-554.) | |
[48] | Yan L, Zhang Y, Wang N, et al. Comparison of mitochondrial control region sequences between Chelydridae and Platysternidae[J]. Zool Res, 2008, 29(2): 127-133. (in Chinese) |
(颜亮, 张雁, 汪宁, 等. 鳄龟科和平胸龟科线粒体控制区序列分析和结构比较[J]. 动物学研究, 2008, 29(2): 127-133.) | |
[49] | Wang W, Zhu H, Hu HX, et al. Heteroplasmy in mtDNA control region and phylogenetics of five sturgeons[J]. Zool Res, 2009, 30(5): 487-496. (in Chinese) |
(王巍, 朱华, 胡红霞, 等. 五种鲟鱼线粒体控制区异质性和系统发育分析[J]. 动物学研究, 2009, 30(5): 487-496.) | |
[50] | Xiong L, Nie LW. Comparison research of mitochondrial control region sequences of Pelodiscus sinensis from different loci[J]. J Biol, 2010, 27(6): 9-12. (in Chinese) |
(熊磊, 聂刘旺. 不同产地中华鳖的线粒体控制区序列分析及结构比较[J]. 生物学杂志, 2010, 27(6): 9-12.) | |
[51] | Domes K, Maraun M, Scheu S, et al. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs[J]. BMC Genomics, 2008, 9: 532. |
[52] | Guo ZL, Yuan ML. Research progress of mitochondrial genomes of Hemiptera insects[J]. Sci Sin Vitae, 2016, 46(2): 151-166. (in Chinese) |
(郭仲龙, 袁明龙. 半翅目昆虫线粒体基因组学研究进展[J]. 中国科学: 生命科学, 2016, 46(2): 151-166.) | |
[53] |
Saito S, Tamura K, Aotsuka T. Replication origin of mitochondrial DNA in insects[J]. Genetics, 2005, 171(4): 1695-1705.
doi: 10.1534/genetics.105.046243 pmid: 16118189 |
[54] | Yuan ML, Wei DD, Wang BJ, et al. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari ∶ Tetranychidae): high genome rearrangement and extremely truncated tRNAs[J]. BMC Genomics, 2010, 11: 597. |
[55] |
Wheeler WC. Nucleic acid sequence phylogeny and random outgroups[J]. Cladistics, 1990, 6(4): 363-367. [PubMed]
doi: 10.1111/j.1096-0031.1990.tb00550.x pmid: 34933486 |
[56] | Guo LL. The complete chloroplast and mitochondrial genomics and phylogenetic analysis of Morus[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022: 36-39. (in Chinese) |
(郭亮亮. 桑属植物叶绿体和线粒体基因组学和进化分析[D]. 镇江: 江苏科技大学, 2022: 36-39.) | |
[57] | Zhang Y, Zhang E, He SP. Studieson the structure of the control region of the Bagridae in Chinaandits phylogentic significance[J]. Acta Hydrobiol Sin, 2003, 27(5): 463-467. (in Chinese) |
(张燕, 张鹗, 何舜平. 中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J]. 水生生物学报, 2003, 27(5): 463-467.) | |
[58] | Liu H, Yang G, Wei FW, et al. Sequence variability of the mitochondrial DNA control region and population genetic structure of Sika deers (Cervus nippon) in China[J]. Acta Zool Sin, 2003, 49(1): 53-60. (in Chinese) |
(刘海, 杨光, 魏辅文, 等. 中国大陆梅花鹿mtDNA控制区序列变异及种群遗传结构分析[J]. 动物学报, 2003, 49(1): 53-60.) | |
[59] |
Randi E, Lucchini V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris[J]. J Mol Evol, 1998, 47(4): 449-462.
pmid: 9767690 |
[60] | Song Y, Wang XQ, Song YX, et al. SSR characteristic analysis based on the complete sequences of Gossypium mitochondrial genomes[J]. Molecular Plant Breeding, 2023, 1-19. (in Chinese) |
(宋岩, 王祥勤, 宋怡璇, 等. 基于棉花线粒体基因组全序列的SSR特征分析[J]. 分子植物育种, 2023, 1-19.) | |
[61] |
Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J]. Mol Biol Evol, 1987, 4(3): 203-221.
doi: 10.1093/oxfordjournals.molbev.a040442 pmid: 3328815 |
[62] |
Pâques F, Leung WY, Haber JE. Expansions and contractions in a tandem repeat induced by double-strand break repair[J]. Mol Cell Biol, 1998, 18(4): 2045-2054.
doi: 10.1128/MCB.18.4.2045 pmid: 9528777 |
[63] |
Broughton RE, Dowling TE. Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera[J]. Genetics, 1994, 138(1): 179-190.
doi: 10.1093/genetics/138.1.179 pmid: 8001785 |
[64] |
Sheffield NC, Song H, Cameron SL, et al. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda∶Insecta) and genome descriptions of six new beetles[J]. Mol Biol Evol, 2008, 25(11): 2499-2509.
doi: 10.1093/molbev/msn198 pmid: 18779259 |
[65] |
Cornuet JM, Garnery L, Solignac M. Putative origin and function of the intergenic region between COⅠ and COⅡ of Apis mellifera L. mitochondrial DNA[J]. Genetics, 1991, 128(2): 393-403.
doi: 10.1093/genetics/128.2.393 pmid: 1649072 |
[66] | Zhang J. The evolutionary study on Monogeneans using mitochondrial genomes[D]. Guangzhou: Zhongshan University, 2011: 83-85. (in Chinese) |
(张娟. 单殖吸虫线粒体基因组进化生物学研究[D]. 广州: 中山大学, 2011: 83-85.) | |
[67] | Yan Y. Complete mitochondrial genomes of two genera of Volucellini with their phylogeny[D]. Shanxi: Shanxi University of Science and Technology, 2022: 125-126. (in Chinese) |
(闫艳. 蜂蚜蝇族两属线粒体全基因组序列及系统发育分析[D]. 陕西: 陕西理工大学, 2022: 125-126.) | |
[68] | Wei SJ. Characteristics and evolution of mitochondrial genome of Hymenoptera and its application in phylogenetic research[D]. Hangzhou: Zhejiang University, 2009: 134-136. (in Chinese) |
(魏书军. 膜翅目线粒体基因组的特征与进化及其在系统发育研究中的应用[D]. 杭州: 浙江大学, 2009: 134-136.) | |
[69] |
Rand DM. Thermal habit, metabolic rate and the evolution of mitochondrial DNA[J]. Trends Ecol Evol, 1994, 9(4): 125-131.]
doi: 10.1016/0169-5347(94)90176-7 pmid: 21236795 |
[70] | Whiting MF. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera[J]. Zool Scr, 2002, 31(1): 93-104. |
[71] | Huang DY, Engel MS, Cai CY, et al. Diverse transitional giant fleas from the Mesozoic era of China[J]. Nature, 2012, 483(7388): 201-204. |
[72] | Zhao XD, Wang B, Bashkuev AS, et al. Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies[J]. Sci Adv, 2020, 6(10): eaay1259. |
[73] | Tihelka E, Giacomelli M, Huang DY, et al. Fleas are parasitic scorpionflies[J]. Palaeoentomology, 2020, 3(6): 641-653. |
[1] | 付永, 张海宁, 陈旺开, 师正合, 张学勇, 郭志宏, 朵红, 沈秀英, 孟茹, 李志. 青海地区多房棘球绦虫和石渠棘球绦虫遗传分化特征[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 309-315. |
[2] | 王宁, 彭晗琪, 高常哲, 程羽珩, 吕大兵. “夜逸蚴”日本血吸虫线粒体基因组特征与系统进化的关系[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 699-707. |
[3] | 汤非凡, 蒋峰, 汪梅青, 王澜, 曹佳诚, 夏钰婷, 王婧璇, 唐礼庆, 湛孝东. 速生薄口螨成螨的形态观察和系统进化分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 344-348. |
[4] | 韦开文, 曾红霞, 何牧, 胡俊杰. 浣熊贝氏蛔虫核糖体基因和线粒体基因分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 594-602. |
[5] | 刘雅芳, 陈彬, 芦新焱, 李光华, 杜春红, 姜丹丹, 杨兴. 云南微小扇头蜱线粒体基因组全序列测定与分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 677-681. |
[6] | 谭磊, 王爱兵, 孔小鲜, 梁轩, 贺峻琳, 李洁, 胡丹, 刘伟. 湖南省不同种类蛇源裂头蚴线粒体pnad1基因序列多态性研究[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(4): 448-452. |
[7] | 崔国艳,汪世平*,程红兵,魏红,何鑫,闾丘思嘉,黄成铭. 灭螺微生物的选育及其效果观察[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(3): 17-234-236. |
[8] | 李石柱;王艺秀;刘琴;吕山;王强;吴缨;张仪;周晓农. 湖北钉螺线粒体基因组全序列测定研究[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(4): 1-296. |
[9] | 袁忠英;沈玉娟;曹建平;刘晖;陈盛霞. 牛源隐孢子虫上海分离株的巢式PCR鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2009, 27(2): 9-139. |
[10] | 崔玉宝;;高璀乡;周鹰;彭江龙;刘良. 3 种常见尘螨分子进化关系的初步探讨[J]. 中国寄生虫学与寄生虫病杂志, 2008, 26(5): 18-396. |
[11] | 曹丽萍,何麟. 印鼠客蚤、猫蚤和人蚤氨基酸及DNA含量的比较分析[J]. 中国寄生虫学与寄生虫病杂志, 1988, 6(S1): 152-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||