中国寄生虫学与寄生虫病杂志 ›› 2024, Vol. 42 ›› Issue (6): 790-795.doi: 10.12140/j.issn.1000-7423.2024.06.015
尹先敏1(), 种世桂1,2, 陈根1, 秦俊梅1, 赵玉敏1,2,*(
)
收稿日期:
2024-05-28
修回日期:
2024-09-26
出版日期:
2024-12-30
发布日期:
2025-01-14
通讯作者:
赵玉敏(1971—),男,博士,教授,主要从事寄生虫病防治研究。E-mail:作者简介:
尹先敏(1998—),女,硕士研究生,主要从事寄生虫病防治研究。E-mail:yinxianmin2022@163.com
基金资助:
YIN Xianmin1(), CHONG Shigui1,2, CHEN Gen1, QIN Junmei1, ZHAO Yumin1,2,*(
)
Received:
2024-05-28
Revised:
2024-09-26
Online:
2024-12-30
Published:
2025-01-14
Contact:
E-mail: Supported by:
摘要:
多房棘球蚴病(AE)是一种严重危害人类健康和畜牧业发展的人兽共患寄生虫病。AE病变周围各种免疫细胞(包括巨噬细胞)浸润增加,可造成以肝脏为主的多种重要器官纤维化,并可能发展成肝硬化和肝癌等严重疾病。几种巨噬细胞在AE肝脏炎症的进程以及纤维化形成的不同时期分别表现为M1型巨噬细胞或M2型巨噬细胞,并分泌促炎细胞因子和抗炎细胞因子,以此来促进早期棘球蚴的清除作用和中晚期的抗炎作用从而在AE肝脏纤维化的形成过程中发挥调控作用。本文从AE所致肝脏纤维化中几种巨噬细胞的调控机制作一论述。
中图分类号:
尹先敏, 种世桂, 陈根, 秦俊梅, 赵玉敏. 巨噬细胞调控多房棘球蚴病所致肝纤维化研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(6): 790-795.
YIN Xianmin, CHONG Shigui, CHEN Gen, QIN Junmei, ZHAO Yumin. Research progress of macrophage regulation of liver fibrosis induced by alveolar echinococcosis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2024, 42(6): 790-795.
[1] | Liu HD, Wang HB, Fan HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. (in Chinese) |
(刘寒冬, 王宏宾, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660.) | |
[2] | Beschin A, De Baetselier P, van Ginderachter JA. Contribution of myeloid cell subsets to liver fibrosis in parasite infection[J]. J Pathol, 2013, 229(2): 186-197. |
[3] | Joliat GR, Roulin D, Labgaa I, et al. Novelties on the management of alveolar echinococcosis[J]. Rev Med Suisse, 2023, 19(831): 1192-1195. |
[4] | Chai JY, Jung BK, Hong SJ. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: an update[J]. Korean J Parasitol, 2021, 59(3): 189-225. |
[5] |
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166.
doi: 10.1038/s41575-020-00372-7 pmid: 33128017 |
[6] | Gao CC, Bai J, Han H, et al. The versatility of macrophage heterogeneity in liver fibrosis[J]. Front Immunol, 2022, 13: 968879. |
[7] |
Guillot A, Tacke F. Liver macrophages: old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743.
doi: 10.1002/hep4.1356 pmid: 31168508 |
[8] | Wang MM, An XQ, Zhou HQ, et al. Research progress in hepaticalveolar echinococcosis leading to cirrhosis[J]. Chin J Zoo-noses, 2023, 39(11): 1130-1135. (in Chinese) |
(王苗苗, 安秀青, 周鸿乾, 等. 肝多房棘球蚴病导致肝硬化的研究进展[J]. 中国人兽共患病学报, 2023, 39(11): 1130-1135.) | |
[9] | Min HY, Tian FM, Zhang JY, et al. Role of monocyte chemotactic protein 1-mediated monocyte infiltration in liver fibrosis of alveolar echinococcosis[J]. J Pathog Biol, 2023, 18(4): 400-405, 410. (in Chinese) |
(闵宏悦, 田凤鸣, 张靖仪, 等. MCP-1介导单核细胞浸润在泡型包虫病肝纤维化中的作用[J]. 中国病原生物学杂志, 2023, 18(4): 400-405, 410.) | |
[10] | Ma YY, Li JJ, Liu YM, et al. Identification and exploration of a new M2 macrophage marker MTLN in alveolar echinococcosis[J]. Int Immunopharmacol, 2024, 131: 111808. |
[11] |
Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol, 2014, 60(5): 1090-1096.
doi: 10.1016/j.jhep.2013.12.025 pmid: 24412603 |
[12] | Zhang RJ, Pang HS, Li JZ, et al. Mechanism of hepatic fibrosis associated with Echinococcus: a review[J]. Chin J Schistosomiasis Contr, 2022, 34(6): 646-653. (in Chinese) |
(张仁杰, 庞华胜, 李景中, 等. 棘球绦虫诱导肝纤维化机制研究进展[J]. 中国血吸虫病防治杂志, 2022, 34(6): 646-653.) | |
[13] | Zhang LH, Chen G, Chong SG, et al. Research progress on the immune regulation mechanism in alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2022, 40(1): 109-113, 120. (in Chinese) |
(张伶慧, 陈根, 种世桂, 等. 多房棘球蚴病中免疫细胞调控机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 109-113, 120.)
doi: 10.12140/j.issn.1000-7423.2022.01.017 |
|
[14] | Jia R, Hui Y, Yan SG, et al. Research progress on relationship between macrophage M1/M2 polarization and immune in-flammatory diseases[J]. Chin J Immunol, 2021, 37(22): 2791-2797. (in Chinese) |
(贾瑞, 惠毅, 闫曙光, 等. 巨噬细胞M1/M2型极化与免疫炎症性疾病关系的研究进展[J]. 中国免疫学杂志, 2021, 37(22): 2791-2797.) | |
[15] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
doi: 10.1002/jcp.26429 pmid: 29319160 |
[16] |
Novo E, Marra F, Zamara E, et al. Overexpression of bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans[J]. Gut, 2006, 55(8): 1174-1182.
pmid: 16423888 |
[17] |
Emery I, Liance M, Deriaud E, et al. Characterization of T-cell immune responses of Echinococcus multilocularis-infected C57BL/6J mice[J]. Parasite Immunol, 1996, 18(9): 463-472.
doi: 10.1111/j.1365-3024.1996.tb01030.x pmid: 9226682 |
[18] |
Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice[J]. J Clin Invest, 2011, 121(9): 3425-3441.
doi: 10.1172/JCI57582 pmid: 21821915 |
[19] | Feng N, Zhang CT, Cao WY, et al. CD19+CD24hiCD38hi regulatory B cells involved in hepatic alveolar hydatid infection in humans[J]. Ann Clin Lab Sci, 2019, 49(3): 338-343. |
[20] |
Wang J, Gottstein B. Immunoregulation in larval Echinococcus multilocularis infection[J]. Parasite Immunol, 2016, 38(3): 182-192.
doi: 10.1111/pim.12292 pmid: 26536823 |
[21] |
Muraille E, Leo O, Moser M. Th1/Th2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism?[J]. Front Immunol, 2014, 5: 603.
doi: 10.3389/fimmu.2014.00603 pmid: 25505468 |
[22] | Wynn TA, Chawla A, Pollard JW. Macro-phage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455. |
[23] |
Braga TT, Agudelo JSH, Camara NOS. Macrophages during the fibrotic process: M2 as friend and foe[J]. Front Immunol, 2015, 6: 602.
doi: 10.3389/fimmu.2015.00602 pmid: 26635814 |
[24] | Wang H, Zhang CS, Fang BB, et al. Dual role of hepatic macrophages in the establishment of the Echinococcus multilocularis metacestode in mice[J]. Front Immunol, 2020, 11: 600635. |
[25] | Yang HD, Cheng H, Dai RR, et al. Macrophage polarization in tissue fibrosis[J]. PeerJ, 2023, 11: e16092. |
[26] | Chong SG, Chen G, Dang ZS, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered, 2022, 13(4): 8747-8758. |
[27] | Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases[J]. Int J Mol Sci, 2018, 19(6): 1801. |
[28] |
Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167.
doi: 10.1369/0022155415627681 pmid: 26747705 |
[29] |
Luo Y, Shao LJ, Chang JH, et al. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion[J]. Blood Adv, 2018, 2(8): 859-870.
doi: 10.1182/bloodadvances.2018015685 pmid: 29666049 |
[30] |
Gandhi CR. Hepatic stellate cell activation and pro-fibrogenic signals[J]. J Hepatol, 2017, 67(5): 1104-1105.
doi: S0168-8278(17)32068-8 pmid: 28939135 |
[31] | Wang Z, Du KL, Jin NK, et al. Macrophage in liver fibrosis: identities and me-chanisms[J]. Int Immunopharmacol, 2023, 120: 110357. |
[32] | Liu YM, Tian FM, Shan JY, et al. Kupffer cells: Important participant of hepatic alveolar echinococcosis[J]. Front Cell Infect Microbiol, 2020, 10: 8. |
[33] |
Fabriek BO, van Bruggen R, Deng DM, et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria[J]. Blood, 2009, 113(4): 887-892.
doi: 10.1182/blood-2008-07-167064 pmid: 18849484 |
[34] |
Wallace K, Burt AD, Wright MC. Liver fibrosis[J]. Biochem J, 2008, 411(1): 1-18.
doi: 10.1042/BJ20071570 pmid: 18333835 |
[35] | Wang JH, Zhang CS, Wei XF, et al. TGF-β and TGF-β/Smad signaling in the interactions between Echinococcus multilocularis and its hosts[J]. PLoS One, 2013, 8(2): e55379. |
[36] | Dewidar B, Meyer C, Dooley S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8(11): 1419. |
[37] | Huang Y, Huang C, Li J. Effect of cyto-kines secreted from Kupffer cell on HSC proliferation, apoptosis in hepatic fibrosis process[J]. Chin Pharmacol Bull, 2010, 26(1): 9-13. (in Chinese) |
(黄艳, 黄成, 李俊. 肝纤维化病程中Kupffer细胞分泌的细胞因子对肝星状细胞活化增殖、凋亡的调控[J]. 中国药理学通报, 2010, 26(1): 9-13.) | |
[38] | Su SB, Qin SY, Xian XL, et al. Interleu-kin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis[J]. Life Sci, 2021, 264: 118677. |
[39] |
Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14(10): 986-995.
doi: 10.1038/ni.2705 pmid: 24048120 |
[40] | van der Heide D, Weiskirchen R, Bansal R. Therapeutic targeting of hepatic macro-phages for the treatment of liver diseases[J]. Front Immunol, 2019, 10: 2852. |
[41] | Karlmark KR, Weiskirchen R, Zimmer-mann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. He-patology, 2009, 50(1): 261-274. |
[42] |
Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies[J]. Cell Mol Immunol, 2016, 13(3): 316-327.
doi: 10.1038/cmi.2015.104 pmid: 26908374 |
[43] | Liaskou E, Zimmermann HW, Li KK, et al. Monocyte subsets in human liver disease show distinct phenotypic and functional cha-racteristics[J]. Hepatology, 2013, 57(1): 385-398. |
[44] |
Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91.
doi: 10.1016/j.immuni.2012.12.001 pmid: 23273845 |
[45] |
Wen YK, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1): 45-56.
doi: 10.1038/s41423-020-00558-8 pmid: 33041338 |
[46] | Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. Proc Natl Acad Sci USA, 2012, 109(46): E3186-E3195. |
[47] |
Cheng D, Chai J, Wang HW, et al. Hepatic macrophages: key players in the development and progression of liver fibrosis[J]. Liver Int, 2021, 41(10): 2279-2294.
doi: 10.1111/liv.14940 pmid: 33966318 |
[48] |
Bresson-Hadni S, Petitjean O, Mon-not-Jacquard B, et al. Cellular localisations of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha mRNA in a parasitic granulomatous disease of the liver, alveolar echinococcosis[J]. Eur Cytokine Netw, 1994, 5(5): 461-468.
pmid: 7880977 |
[49] | Tian FM, Jiang T, Qi XW, et al. Role of cytokines on the progression of liver fibrosis in mice infected with Echinococcus multilocularis[J]. Infect Drug Resist, 2021, 14: 5651-5660. |
[50] |
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity, 2016, 44(3): 450-462.
doi: S1074-7613(16)30053-X pmid: 26982353 |
[51] | Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013, 58(4): 1461-1473. |
[52] | Negash AA, Ramos HJ, Crochet N, et al. IL-1β production through the NLRP3 inflam-masome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease[J]. PLoS Pathog, 2013, 9(4): e1003330. |
[1] | 李振伟, 王成, 王志鑫, 刘津铭, 赵乾, 王海久, 谢智. 基于三维可视化技术指导肝多房棘球蚴病手术方案的应用研究[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(6): 737-743. |
[2] | 祖力皮喀尔·图孙尼亚孜, 蒋铁民, 温浩. 肝多房棘球蚴病的手术治疗进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(6): 783-789. |
[3] | 赵涵玥, 李锦田, 薛俊隆, 卡力比夏提·艾木拉江, 林仁勇, 吐尔干艾力·阿吉. 多房棘球蚴感染晚期小鼠肝脏中NK1.1的表达对T细胞功能的影响[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 594-600. |
[4] | 徐刚, 毛艺, 李江, 张宏伟, 张永国, 吴向未, 彭心宇, 孙红, 杨婧, 陈骞, 张示杰. 多房棘球蚴通过肝脏p38MAPK通路调控棘球蚴自身生长[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(4): 447-453. |
[5] | 蒉嫣, 薛垂召, 王旭, 刘白雪, 王莹, 王立英, 杨诗杰, 韩帅, 许学年. 2022年全国棘球蚴病防治工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 8-16. |
[6] | 逯君霞, 许军英, 赵彬, 王芊文, 李文华, 耿玉庆, 侯隽, 吴向未, 陈雪玲. 细粒棘球蚴感染诱导巨噬细胞表达CD73和A2AR抑制炎症反应[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 559-566. |
[7] | 朱爱娅, 王旭, 王江友, 王颖, 李杨, 宋珊, 耿燕, 兰子尧, 戴佳芮. 贵州省儿童多房棘球蚴病1例[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 520-523. |
[8] | 娆琬·托勒洪, 阿不都撒拉木·阿不力克木, 杨凌菲, 陈璐, 李钊, 贾芳, 宋涛. 超声表现诊断肝多房棘球蚴病的效果评价及因素分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 312-318. |
[9] | 蒉嫣, 薛垂召, 王旭, 刘白雪, 王莹, 王立英, 杨诗杰, 韩帅, 伍卫平, 肖宁. 2021年全国棘球蚴病防治进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 142-148. |
[10] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
[11] | 焦红杰, 齐文静, 郭刚, 包建玲, 吴川川, 宋传龙, 李军, 张文宝, 严媚. 细粒棘球蚴抗原B对小鼠巨噬细胞RAW264.7的极化作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 23-28. |
[12] | 安秀青, 王苗苗, 周鸿乾, 孟凯, 蔡剑平, 刘光辉, 阿吉德, 杨金煜. 肝多房棘球蚴病微血管密度的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 792-797. |
[13] | 李佳铭, 王艺璇, 杨宁爱, 马慧慧, 兰敏, 刘春兰, 赵志军. 刚地弓形虫ROP16蛋白对MH-S细胞极化和凋亡的影响及其相关机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 579-586. |
[14] | 张婷婷, 杜秋沛, 郭新建, 张灵强, 王志鑫, 常正松, 赵乾, 王海久, 侯立朝. 肝多房棘球蚴病脉管侵犯的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 516-523. |
[15] | 吴亮亮, 杨凌菲, 宋涛. 不同方式建立肝多房棘球蚴感染SD大鼠模型病灶的超声及病理表现[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 549-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||