[1] | Liu HD, Wang HB, Fan HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. (in Chinese) | | (刘寒冬, 王宏宾, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660.) | [2] | Beschin A, De Baetselier P, van Ginderachter JA. Contribution of myeloid cell subsets to liver fibrosis in parasite infection[J]. J Pathol, 2013, 229(2): 186-197. | [3] | Joliat GR, Roulin D, Labgaa I, et al. Novelties on the management of alveolar echinococcosis[J]. Rev Med Suisse, 2023, 19(831): 1192-1195. | [4] | Chai JY, Jung BK, Hong SJ. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: an update[J]. Korean J Parasitol, 2021, 59(3): 189-225. | [5] | Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. | [6] | Gao CC, Bai J, Han H, et al. The versatility of macrophage heterogeneity in liver fibrosis[J]. Front Immunol, 2022, 13: 968879. | [7] | Guillot A, Tacke F. Liver macrophages: old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. | [8] | Wang MM, An XQ, Zhou HQ, et al. Research progress in hepaticalveolar echinococcosis leading to cirrhosis[J]. Chin J Zoo-noses, 2023, 39(11): 1130-1135. (in Chinese) | | (王苗苗, 安秀青, 周鸿乾, 等. 肝多房棘球蚴病导致肝硬化的研究进展[J]. 中国人兽共患病学报, 2023, 39(11): 1130-1135.) | [9] | Min HY, Tian FM, Zhang JY, et al. Role of monocyte chemotactic protein 1-mediated monocyte infiltration in liver fibrosis of alveolar echinococcosis[J]. J Pathog Biol, 2023, 18(4): 400-405, 410. (in Chinese) | | (闵宏悦, 田凤鸣, 张靖仪, 等. MCP-1介导单核细胞浸润在泡型包虫病肝纤维化中的作用[J]. 中国病原生物学杂志, 2023, 18(4): 400-405, 410.) | [10] | Ma YY, Li JJ, Liu YM, et al. Identification and exploration of a new M2 macrophage marker MTLN in alveolar echinococcosis[J]. Int Immunopharmacol, 2024, 131: 111808. | [11] | Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol, 2014, 60(5): 1090-1096. | [12] | Zhang RJ, Pang HS, Li JZ, et al. Mechanism of hepatic fibrosis associated with Echinococcus: a review[J]. Chin J Schistosomiasis Contr, 2022, 34(6): 646-653. (in Chinese) | | (张仁杰, 庞华胜, 李景中, 等. 棘球绦虫诱导肝纤维化机制研究进展[J]. 中国血吸虫病防治杂志, 2022, 34(6): 646-653.) | [13] | Zhang LH, Chen G, Chong SG, et al. Research progress on the immune regulation mechanism in alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2022, 40(1): 109-113, 120. (in Chinese) | | (张伶慧, 陈根, 种世桂, 等. 多房棘球蚴病中免疫细胞调控机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 109-113, 120.) | [14] | Jia R, Hui Y, Yan SG, et al. Research progress on relationship between macrophage M1/M2 polarization and immune in-flammatory diseases[J]. Chin J Immunol, 2021, 37(22): 2791-2797. (in Chinese) | | (贾瑞, 惠毅, 闫曙光, 等. 巨噬细胞M1/M2型极化与免疫炎症性疾病关系的研究进展[J]. 中国免疫学杂志, 2021, 37(22): 2791-2797.) | [15] | Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. | [16] | Novo E, Marra F, Zamara E, et al. Overexpression of bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans[J]. Gut, 2006, 55(8): 1174-1182. | [17] | Emery I, Liance M, Deriaud E, et al. Characterization of T-cell immune responses of Echinococcus multilocularis-infected C57BL/6J mice[J]. Parasite Immunol, 1996, 18(9): 463-472. | [18] | Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice[J]. J Clin Invest, 2011, 121(9): 3425-3441. | [19] | Feng N, Zhang CT, Cao WY, et al. CD19+CD24hiCD38hi regulatory B cells involved in hepatic alveolar hydatid infection in humans[J]. Ann Clin Lab Sci, 2019, 49(3): 338-343. | [20] | Wang J, Gottstein B. Immunoregulation in larval Echinococcus multilocularis infection[J]. Parasite Immunol, 2016, 38(3): 182-192. | [21] | Muraille E, Leo O, Moser M. Th1/Th2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism?[J]. Front Immunol, 2014, 5: 603. | [22] | Wynn TA, Chawla A, Pollard JW. Macro-phage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455. | [23] | Braga TT, Agudelo JSH, Camara NOS. Macrophages during the fibrotic process: M2 as friend and foe[J]. Front Immunol, 2015, 6: 602. | [24] | Wang H, Zhang CS, Fang BB, et al. Dual role of hepatic macrophages in the establishment of the Echinococcus multilocularis metacestode in mice[J]. Front Immunol, 2020, 11: 600635. | [25] | Yang HD, Cheng H, Dai RR, et al. Macrophage polarization in tissue fibrosis[J]. PeerJ, 2023, 11: e16092. | [26] | Chong SG, Chen G, Dang ZS, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered, 2022, 13(4): 8747-8758. | [27] | Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases[J]. Int J Mol Sci, 2018, 19(6): 1801. | [28] | Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167. | [29] | Luo Y, Shao LJ, Chang JH, et al. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion[J]. Blood Adv, 2018, 2(8): 859-870. | [30] | Gandhi CR. Hepatic stellate cell activation and pro-fibrogenic signals[J]. J Hepatol, 2017, 67(5): 1104-1105. | [31] | Wang Z, Du KL, Jin NK, et al. Macrophage in liver fibrosis: identities and me-chanisms[J]. Int Immunopharmacol, 2023, 120: 110357. | [32] | Liu YM, Tian FM, Shan JY, et al. Kupffer cells: Important participant of hepatic alveolar echinococcosis[J]. Front Cell Infect Microbiol, 2020, 10: 8. | [33] | Fabriek BO, van Bruggen R, Deng DM, et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria[J]. Blood, 2009, 113(4): 887-892. | [34] | Wallace K, Burt AD, Wright MC. Liver fibrosis[J]. Biochem J, 2008, 411(1): 1-18. | [35] | Wang JH, Zhang CS, Wei XF, et al. TGF-β and TGF-β/Smad signaling in the interactions between Echinococcus multilocularis and its hosts[J]. PLoS One, 2013, 8(2): e55379. | [36] | Dewidar B, Meyer C, Dooley S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019[J]. Cells, 2019, 8(11): 1419. | [37] | Huang Y, Huang C, Li J. Effect of cyto-kines secreted from Kupffer cell on HSC proliferation, apoptosis in hepatic fibrosis process[J]. Chin Pharmacol Bull, 2010, 26(1): 9-13. (in Chinese) | | (黄艳, 黄成, 李俊. 肝纤维化病程中Kupffer细胞分泌的细胞因子对肝星状细胞活化增殖、凋亡的调控[J]. 中国药理学通报, 2010, 26(1): 9-13.) | [38] | Su SB, Qin SY, Xian XL, et al. Interleu-kin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis[J]. Life Sci, 2021, 264: 118677. | [39] | Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14(10): 986-995. | [40] | van der Heide D, Weiskirchen R, Bansal R. Therapeutic targeting of hepatic macro-phages for the treatment of liver diseases[J]. Front Immunol, 2019, 10: 2852. | [41] | Karlmark KR, Weiskirchen R, Zimmer-mann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. He-patology, 2009, 50(1): 261-274. | [42] | Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies[J]. Cell Mol Immunol, 2016, 13(3): 316-327. | [43] | Liaskou E, Zimmermann HW, Li KK, et al. Monocyte subsets in human liver disease show distinct phenotypic and functional cha-racteristics[J]. Hepatology, 2013, 57(1): 385-398. | [44] | Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91. | [45] | Wen YK, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1): 45-56. | [46] | Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. Proc Natl Acad Sci USA, 2012, 109(46): E3186-E3195. | [47] | Cheng D, Chai J, Wang HW, et al. Hepatic macrophages: key players in the development and progression of liver fibrosis[J]. Liver Int, 2021, 41(10): 2279-2294. | [48] | Bresson-Hadni S, Petitjean O, Mon-not-Jacquard B, et al. Cellular localisations of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha mRNA in a parasitic granulomatous disease of the liver, alveolar echinococcosis[J]. Eur Cytokine Netw, 1994, 5(5): 461-468. | [49] | Tian FM, Jiang T, Qi XW, et al. Role of cytokines on the progression of liver fibrosis in mice infected with Echinococcus multilocularis[J]. Infect Drug Resist, 2021, 14: 5651-5660. | [50] | Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity, 2016, 44(3): 450-462. | [51] | Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013, 58(4): 1461-1473. | [52] | Negash AA, Ramos HJ, Crochet N, et al. IL-1β production through the NLRP3 inflam-masome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease[J]. PLoS Pathog, 2013, 9(4): e1003330. |
|