[1] | Papaiakovou M, Littlewood DTJ, Doyle SR, et al. Worms and bugs of the gut: the search for diagnostic signatures using barcoding, and metagenomics-metabolomics[J]. Parasit Vectors, 2022, 15(1): 118. | [2] | Kang WH, Jee SC. Enterobius vermicularis (pinworm) infection[J]. N Engl J Med, 2019, 381(1): e1. | [3] | Lin H, Yang GY. Strongyloidiasis of human and animals[J]. Chin J Zoonoses, 2016, 32(5): 477-484, 505. (in Chinese) | | (林海, 杨光友. 人和动物的类圆线虫病[J]. 中国人兽共患病学报, 2016, 32(5): 477-484, 505.) | [4] | Brooker S, Clements AC, Bundy DA. Global epidemiology, ecology and control of soil-transmitted helminth infections[J]. Adv Parasitol, 2006, 62: 221-261. | [5] | Horrocks V, King OG, Yip AYG, et al. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization[J]. Microbiology (Reading), 2023, 169(8): 001377. | [6] | Cortés A, Peachey L, Scotti R, et al. Helminth-microbiota cross-talk: a journey through the vertebrate digestive system[J]. Mol Biochem Parasitol, 2019, 233: 111222. | [7] | Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum[J]. Nat Rev Microbiol, 2021, 19(10): 623-638. | [8] | Hooper LV, Littman DR, MacPherson AJ. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086): 1268-1273. | [9] | Gause WC, Maizels RM. Macrobiota: helminths as active participants and partners of the microbiota in host intestinal homeostasis[J]. Curr Opin Microbiol, 2016, 32: 14-18. | [10] | Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity[J]. Mucosal Immunol, 2018, 11(4): 1039-1046. | [11] | Kato Y, Komatsu S. ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum. Purification, primary structure, and molecular cloning of cDNA[J]. J Biol Chem, 1996, 271(48): 30493-30498. | [12] | Marillier RG, Michels C, Smith EM, et al. IL-4/IL-13 independent goblet cell hyperplasia in experimental helminth infections[J]. BMC Immunol, 2008, 9: 11. | [13] | Datta R, DeSchoolmeester ML, Hedeler C, et al. Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite[J]. Infect Immun, 2005, 73(7): 4025-4033. | [14] | Sun SM, Wang XL, Wu XP, et al. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease[J]. Parasit Vectors, 2011, 4: 186. | [15] | Walusimbi B, Lawson MAE, Nassuuna J, et al. The effects of helminth infections on the human gut microbiome: a systematic review and meta-analysis[J]. Front Microbiomes, 2023, 2: 1174034. | [16] | Cooper P, Walker AW, Reyes J, et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota[J]. PLoS One, 2013, 8(10): e76573. | [17] | Pryshliak OY, Protsyk AL, Semaniv MV, et al. Effect of probiotics on the intestinal microbiota of patients with giardiasis and ascariasis[J]. J Med Life, 2022, 15(10): 1278-1282. | [18] | Guernier V, Brennan B, Yakob L, et al. Gut microbiota disturbance during helminth infection: can it affect cognition and behaviour of children?[J]. BMC Infect Dis, 2017, 17(1): 58. | [19] | Ramírez-Carrillo E, Gaona O, Nieto J, et al. Disturbance in human gut microbiota networks by parasites and its implications in the incidence of depression[J]. Sci Rep, 2020, 10(1): 3680. | [20] | Klomkliew P, Sawaswong V, Chanchaem P, et al. Gut bacteriome and metabolome of Ascaris lumbricoides in patients[J]. Sci Rep, 2022, 12(1): 19524. | [21] | Jenkins TP, Pritchard DI, Tanasescu R, et al. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis[J]. BMC Biol, 2021, 19(1): 74. | [22] | Cantacessi C, Giacomin P, Croese J, et al. Impact of experimental hookworm infection on the human gut microbiota[J]. J Infect Dis, 2014, 210(9): 1431-1434. | [23] | Giacomin P, Zakrzewski M, Croese J, et al. Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects[J]. Sci Rep, 2015, 5: 13797. | [24] | Chen HL, Mozzicafreddo M, Pierella E, et al. Dissection of the gut microbiota in mothers and children with chronic Trichuris trichiura infection in Pemba Island, Tanzania[J]. Parasit Vectors, 2021, 14(1): 62. | [25] | Lee SC, Tang MS, Lim YA, et al. Helminth colonization is associated with increased diversity of the gut microbiota[J]. PLoS Negl Trop Dis, 2014, 8(5): e2880. | [26] | Yang CN, Liang C, Lin CL, et al. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response[J]. PLoS Negl Trop Dis, 2017, 11(9): e0005963. | [27] | Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces[J]. Front Immunol, 2013, 4: 185. | [28] | Nguyen HT, Hongsrichan N, Intuyod K,et al. Strongyloides stercoralis infection induces gut dysbiosis in chronic kidney disease patients[J]. PLoS Negl Trop Dis, 2022, 16(9): e0010302. | [29] | Nguyen HT, Hongsrichan N, Intuyod K, et al. Investigation of gut microbiota and short-chain fatty acids in Strongyloides stercoralis-infected patients in a rural community[J]. Biosci Microbiota Food Health, 2022, 41(3): 121-129. | [30] | Jenkins TP, Formenti F, Castro C, et al. A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area[J]. Sci Rep, 2018, 8(1): 15651. | [31] | Rubel MA, Abbas A, Taylor LJ, et al. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians[J]. Genome Biol, 2020, 21(1): 122. | [32] | Springer A, Wagner L, Koehler S, et al. Modulation of the porcine intestinal microbiota in the course of Ascaris suum infection[J]. Parasit Vectors, 2022, 15(1): 433. | [33] | Wang YY, Liu F, Urban JF Jr, et al. Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome[J]. Int J Parasitol, 2019, 49(3/4): 247-256. | [34] | Midha A, Janek K, Niewienda A, et al. The intestinal roundworm Ascaris suum releases antimicrobial factors which interfere with bacterial growth and biofilm formation[J]. Front Cell Infect Microbiol, 2018, 8: 271. | [35] | Sieng S, Chen P, Wang N,et al. Toxocara canis-induced changes in host intestinal microbial communities[J]. Parasit Vectors, 2023, 16(1): 462. | [36] | Walk ST, Blum AM, Ewing SAS, et al. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus[J]. Inflamm Bowel Dis, 2010, 16(11): 1841-1849. | [37] | Ramanan D, Bowcutt R, Lee SC, et al. Helminth infection promotes colonization resistance via type 2 immunity[J]. Science, 2016, 352(6285): 608-612. | [38] | Rausch S, Midha A, Kuhring M, et al. Parasitic nematodes exert antimicrobial activity and benefit from microbiota-driven support for host immune regulation[J]. Front Immunol, 2018, 9: 2282. | [39] | Shimokawa C, Obi S, Shibata M, et al. Suppression of obesity by an intestinal helminth through interactions with intestinal microbiota[J]. Infect Immun, 2019, 87(6): e00042-19. | [40] | Su CW, Chen CY, Jiao LF, et al. Helminth-induced and Th2-dependent alterations of the gut microbiota attenuate obesity caused by high-fat diet[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(4): 763-778. | [41] | Houlden A, Hayes KS, Bancroft AJ, et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: Effects reversed by pathogen clearance[J]. PLoS One, 2015, 10(5): e0125945. | [42] | Holm JB, Sorobetea D, Kiilerich P, et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli[J]. PLoS One, 2015, 10(5): e0125495. | [43] | Rosa BA, Snowden C, Martin J, et al. Whipworm-associated intestinal microbiome members consistent across both human and mouse hosts[J]. Front Cell Infect Microbiol, 2021, 11: 637570. | [44] | Schachter J, Alvarinho de Oliveira D, da Silva CM, et al. Whipworm infection promotes bacterial invasion, intestinal microbiota imbalance, and cellular immunomodulation[J]. Infect Immun, 2020, 88(3): e00642-19. | [45] | Afrin T, Murase K, Kounosu A, et al. Sequential changes in the host gut microbiota during infection with the intestinal parasitic nematode Strongyloides venezuelensis[J]. Front Cell Infect Microbiol, 2019, 9: 217. | [46] | Pace F, Carvalho BM, Zanotto TM, et al. Helminth infection in mice improves insulin sensitivity via modulation of gut microbiota and fatty acid metabolism[J]. Pharmacol Res, 2018, 132: 33-46. | [47] | Fricke WF, Song Y, Wang AJ, et al. Erratum to: type 2 immunity-dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis[J]. Microbiome, 2015, 3: 77. | [48] | Nobre V, Serufo JC, Carvalho ODOSS, et al. Alteration in the endogenous intestinal flora of Swiss Webster mice by experimental Angiostrongylus costaricensis infection[J]. Mem Inst Oswaldo Cruz, 2004, 99(7): 717-720. | [49] | Hayes KS, Bancroft AJ, Goldrick M, et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris[J]. Science, 2010, 328(5984): 1391-1394. | [50] | Dea-Ayuela MA, Rama-I?iguez S, Bolás-Fernandez F. Enhanced susceptibility to Trichuris muris infection of B10Br mice treated with the probiotic Lactobacillus casei[J]. Int Immunopharmacol, 2008, 8(1): 28-35. | [51] | Oliveira-Sequeira TCG, David éB, Ribeiro C, et al. Effect of Bifidobacterium animalis on mice infected with Strongyloides venezuelensis[J]. Rev Inst Med Trop Sao Paulo, 2014, 56(2): 105-109. | [52] | Jang S, Lakshman S, Beshah E, et al. Flavanol-rich cocoa powder interacts with Lactobacillus rhamnossus LGG to alter the antibody response to infection with the parasitic nematode Ascaris suum[J]. Nutrients, 2017, 9(10): 1113. | [53] | Thomas DJ, Husmann RJ, Villamar M,et al. Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model[J]. PLoS One, 2011, 6(2): e16577. |
|