中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (4): 520-525.doi: 10.12140/j.issn.1000-7423.2021.04.016
收稿日期:
2020-11-12
修回日期:
2020-12-02
出版日期:
2021-08-30
发布日期:
2021-06-04
通讯作者:
吕芳丽
作者简介:
钟秋婷(1996-),女,硕士研究生,主要从事疟疾防治研究。E-mail: 1019746004@qq.com
基金资助:
ZHONG Qiu-ting1(), SONG Jian-ping1, LV Fang-li2,3,4,*(
)
Received:
2020-11-12
Revised:
2020-12-02
Online:
2021-08-30
Published:
2021-06-04
Contact:
LV Fang-li
Supported by:
摘要:
肠道是人体最庞大和最重要的微生态系统,肠道菌群与人体健康和各种疾病关系密切。本文对肠道菌群与疾病的关系,疟疾对肠道菌群的影响,包括胃肠型疟疾对肠道的损伤,疟疾引起的肠道菌群组成、比例和功能的变化;以及肠道菌群对疟疾的影响,包括肠道菌群对疟疾风险的影响、肠道菌群对疟疾转归的影响等进行综述,探讨疟疾与肠道菌群之间的相互关系,为预防和控制疟疾提供新的思路。
中图分类号:
钟秋婷, 宋健平, 吕芳丽. 疟疾和肠道菌群的相互影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 520-525.
ZHONG Qiu-ting, SONG Jian-ping, LV Fang-li. The interactions between malaria and gut microbiota[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(4): 520-525.
[1] | World Health Organization. World malaria report 2020[R]. Geneva: World Health Organization, 2020. |
[2] | LYU FL. The interaction between the COVID-19 pandemic and malaria[J/OL]. J Trop Med, 1-6. [2021-05-13]. http://kns.cnki.net/kcms/detail/44.1503.R.20210305.2024.002.html.(in Chinese) |
(吕芳丽. 新型冠状病毒肺炎疫情与疟疾的相互影响[J/OL]. 热带医学杂志: 1-6. [2021-05-13]. http://kns.cnki.net/kcms/detail/44.1503.R.20210305.2024.002.html.) | |
[3] |
Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415):220-230.
doi: 10.1038/nature11550 |
[4] |
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie van Leeuwenhoek, 2020, 113(12):2019-2040.
doi: 10.1007/s10482-020-01474-7 |
[5] | Xu M, Shen YJ. Progress of research on the interplay between helminth and intestinal protozoa and gut microbiota[J]. Chin J Schisto Control, 2019, 31(1):77-85, 93. (in Chinese) |
(徐梦, 沈玉娟. 蠕虫及肠道原虫感染与肠道菌群关系研究进展[J]. 中国血吸虫病防治杂志, 2019, 31(1):77-85, 93.) | |
[6] |
Wang YY, Liu F, Urban JF Jr, et al. Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome[J]. Int J Parasitol, 2019, 49(3/4):247-256.
doi: 10.1016/j.ijpara.2018.10.007 |
[7] |
White EC, Houlden A, Bancroft AJ, et al. Manipulation of host and parasite microbiotas: survival strategies during chronic nematode infection[J]. Sci Adv, 2018, 4(3):eaap7399.
doi: 10.1126/sciadv.aap7399 |
[8] |
Beatty JK, Akierman SV, Motta JP, et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms[J]. Int J Parasitol, 2017, 47(6):311-326.
doi: 10.1016/j.ijpara.2016.11.010 |
[9] | Ippolto MM, Denny JE, Langelier C, et al. Malaria and the microbiome: a systematic review[J]. Clin Infect Dis, 2018, 67(12):1831-1839. |
[10] |
Yilmaz B, Portugal S, Tran TM, et al. Gut microbiota elicits a protective immune response against malaria transmission[J]. Cell, 2014, 159(6):1277-1289.
doi: 10.1016/j.cell.2014.10.053 |
[11] |
Villarino NF, LeCleir GR, Denny JE, et al. Composition of the gut microbiota modulates the severity of malaria[J]. Proc Natl Acad Sci USA, 2016, 113(8):2235-2240.
doi: 10.1073/pnas.1504887113 |
[12] | Chinese Society of Microecology, Chinese Preventive Medicine Association. Chinese expert consensus on clinical application of microecological agent in digestive tract (2020 version)[J]. Chin J Microecol, 2020, 32(8):953-965. (in Chinese) |
(中华预防医学会微生态学分会. 中国微生态调节剂临床应用专家共识(2020版)[J]. 中国微生态学杂志, 2020, 32(8):953-965.) | |
[13] |
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis[J]. Cell Mol Life Sci, 2017, 74(16):2959-2977.
doi: 10.1007/s00018-017-2509-x |
[14] |
Pascale A, Marchesi N, Marelli C, et al. Microbiota and metabolic diseases[J]. Endocrine, 2018, 61(3):357-371.
doi: 10.1007/s12020-018-1605-5 |
[15] |
Ma QQ, Xing CS, Long WY, et al. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis[J]. J Neuroinflammation, 2019, 16(1):53.
doi: 10.1186/s12974-019-1434-3 |
[16] |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases[J]. Curr Neurol Neurosci Rep, 2017, 17(12):94.
doi: 10.1007/s11910-017-0802-6 |
[17] |
Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders[J]. Ann Med, 2020, 52(8):423-443.
doi: 10.1080/07853890.2020.1808239 pmid: 32772900 |
[18] | Kobliner V, Mumper E, Baker SM. Reduction in obsessive compulsive disorder and self-injurious behavior with Saccharomyces boulardii in a child with autism: a case report[J]. Integr Med (Encinitas), 2018, 17(6):38-41. |
[19] | Liu YW, Liong MT, Chung YE, et al. Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial[J]. Nutrients, 2019, 11(4):E820. |
[20] |
Mesripour A, Meshkati A, Hajhashemi V. A synbiotic mixture augmented the efficacy of doxepin, venlafaxine, and fluvoxamine in a mouse model of depression[J]. Turk J Pharm Sci, 2020, 17(3):293-298.
doi: 10.4274/tjps |
[21] |
Kantak PA, Bobrow DN, Nyby JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG)[J]. Behav Pharmacol, 2014, 25(1):71-79.
doi: 10.1097/FBP.0000000000000013 |
[22] |
Sanikhani NS, Modarressi MH, Jafari P, et al. The effect of Lactobacillus casei consumption in improvement of obsessive-compulsive disorder: an animal study[J]. Probiotics Antimicrob Proteins, 2020, 12(4):1409-1419.
doi: 10.1007/s12602-020-09642-x |
[23] |
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics: a review[J]. J Food Sci Technol, 2015, 52(12):7577-7587.
doi: 10.1007/s13197-015-1921-1 |
[24] |
Mantziaris V, Kolios G. Gut microbiota, atherosclerosis, and therapeutic targets[J]. Crit Pathw Cardiol, 2019, 18(3):139-142.
doi: 10.1097/HPC.0000000000000187 pmid: 31348074 |
[25] |
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?[J]. Gut, 2020, 69(10):1867-1876.
doi: 10.1136/gutjnl-2020-321153 pmid: 32759302 |
[26] | Huang YF, Liu XH, Wu H, et al. The relationship between intestinal mucosal barrier and intestinal microflora[J]. Chin J Microecol, 2019, 31(12):1465-1469, 1474. (in Chinese) |
(黄艳芬, 刘湘红, 伍浩, 等. 肠黏膜屏障与肠道菌群的相互关系[J]. 中国微生态学杂志, 2019, 31(12):1465-1469, 1474.) | |
[27] | Zhu XP, Su C. Human parasitology[M]. 9 ed. Beijing: People’s Medical Publishing House, 2018. (in Chinese). |
(诸欣平, 苏川. 人体寄生虫学[M]. 9版. 北京: 人民卫生出版社, 2018.) | |
[28] |
Wilairatana P, Meddings JB, Ho M, et al. Increased gastrointestinal permeability in patients with Plasmodium falciparum malaria[J]. Clin Infect Dis, 1997, 24(3):430-435.
pmid: 9114195 |
[29] |
Milner DA, Lee JJ, Frantzreb C, et al. Quantitative assessment of multiorgan sequestration of parasites in fatal pediatric cerebral malaria[J]. J Infect Dis, 2015, 212(8):1317-1321.
doi: 10.1093/infdis/jiv205 pmid: 25852120 |
[30] |
Sowunmi A, Ogundahunsi OAT, Falade CO, et al. Gastrointestinal manifestations of acute falciparum malaria in children[J]. Acta Trop, 2000, 74(1):73-76.
pmid: 10643910 |
[31] |
Shimada M, Hirose Y, Shimizu K, et al. Upper gastrointestinal pathophysiology due to mouse malaria Plasmodium berghei ANKA infection[J]. Trop Med Health, 2019, 47:18.
doi: 10.1186/s41182-019-0146-9 |
[32] |
Taniguchi T, Miyauchi E, Nakamura S, et al. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis[J]. Sci Rep, 2015, 5:15699.
doi: 10.1038/srep15699 pmid: 26503461 |
[33] |
Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae[J]. Cell Host Microbe, 2007, 2(3):204.
doi: 10.1016/j.chom.2007.08.002 |
[34] |
Ouwerkerk JP, de Vos WM, Belzer C. Glycobiome: bacteria and mucus at the epithelial interface[J]. Best Pract Res Clin Gastroenterol, 2013, 27(1):25-38.
doi: 10.1016/j.bpg.2013.03.001 pmid: 23768550 |
[35] |
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341.
doi: 10.1126/science.1198469 pmid: 21205640 |
[36] |
Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12):e1001221.
doi: 10.1371/journal.ppat.1001221 |
[37] |
Fan ZG, Li X, Fu HY, et al. Gut microbiota reconstruction following host infection with blood-stage Plasmodium berghei ANKA strain in a murine model[J]. Curr Med Sci, 2019, 39(6):883-889.
doi: 10.1007/s11596-019-2119-y |
[38] |
Denny JE, Powers JB, Castro HF, et al. Differential sensitivity to Plasmodium yoelii infection in C57BL/6 mice impacts gut-liver axis homeostasis[J]. Sci Rep, 2019, 9(1):3472.
doi: 10.1038/s41598-019-40266-6 |
[39] |
Lorenzo-Zúñiga V, Bartolí R, Planas R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats[J]. Hepatology, 2003, 37(3):551-557.
pmid: 12601352 |
[40] | Fan ZG. Changes of intestinal microflora and cellular immune and its mechanism in malaria mice in early erythrocytic stage[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese) |
(范志刚. 红内期早期疟鼠肠道菌群和细胞免疫改变及其机制[D]. 武汉: 华中科技大学, 2019.) | |
[41] |
Mandal RK, Crane RJ, Berkley JA, et al. Longitudinal analysis of infant stool bacteria communities before and after acute febrile malaria and artemether-lumefantrine treatment[J]. J Infect Dis, 2019, 220(4):687-698.
doi: 10.1093/infdis/jiy740 |
[42] |
Denny JE, Schmidt NW. Oral administration of clinically relevant antimalarial drugs does not modify the murine gut microbiota[J]. Sci Rep, 2019, 9(1):11952.
doi: 10.1038/s41598-019-48454-0 |
[43] |
Takem EN, Roca A, Cunnington A. The association between malaria and non-typhoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review[J]. Malar J, 2014, 13(1):1-13.
doi: 10.1186/1475-2875-13-1 |
[44] |
Potts RA, Tiffany CM, Pakpour N, et al. Mast cells and histamine alter intestinal permeability during malaria parasite infection[J]. Immunobiology, 2016, 221(3):468-474.
doi: 10.1016/j.imbio.2015.11.003 |
[45] |
Chau JY, Tiffany CM, Nimishakavi S, et al. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia[J]. Infect Immun, 2013, 81(10):3515-3526.
doi: 10.1128/IAI.00380-13 |
[46] |
Mooney JP, Butler BP, Lokken KL, et al. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection[J]. Mucosal Immunol, 2014, 7(6):1302-1311.
doi: 10.1038/mi.2014.18 pmid: 24670425 |
[47] |
Mooney JP, Lokken KL, Byndloss MX, et al. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection[J]. Sci Rep, 2015, 5:14603.
doi: 10.1038/srep14603 pmid: 26434367 |
[48] |
Alamer E, Carpio VH, Ibitokou SA, et al. Dissemination of non-typhoidal Salmonella during Plasmodium chabaudi infection affects anti-malarial immunity[J]. Parasitol Res, 2019, 118(7):2277-2285.
doi: 10.1007/s00436-019-06349-z |
[49] |
Yooseph S, Kirkness EF, Tran TM, et al. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection[J]. BMC Genomics, 2015, 16:631.
doi: 10.1186/s12864-015-1819-3 pmid: 26296559 |
[50] |
Ngwa CJ, Pradel G. Coming soon: probiotics-based malaria vaccines[J]. Trends Parasitol, 2015, 31(1):2-4.
doi: 10.1016/j.pt.2014.11.006 |
[51] |
Aguilar R, Ubillos I, Vidal M, et al. Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection[J]. Sci Rep, 2018, 8(1):9999.
doi: 10.1038/s41598-018-28325-w pmid: 29968771 |
[52] |
Cabezas-Cruz A, Mateos-Hernández L, Alberdi P, et al. Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases[J]. Exp Mol Med, 2017, 49(3):e301.
doi: 10.1038/emm.2016.164 |
[53] | de Kivit S, Tobin MC, Forsyth CB, et al. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics[J]. Front Immunol, 2014, 5:60. |
[54] |
Kumar H, Salminen S, Verhagen H, et al. Novel probiotics and prebiotics: road to the market[J]. Curr Opin Biotechnol, 2015, 32:99-103.
doi: 10.1016/j.copbio.2014.11.021 |
[55] |
Pérez-Mazliah D, Ng DH, Freitas do Rosário AP, et al. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria[J]. PLoS Pathog, 2015, 11(3):e1004715.
doi: 10.1371/journal.ppat.1004715 |
[56] |
Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2):188-195.
doi: 10.1038/ni.2180 pmid: 22157630 |
[57] |
Curd RD, Birdsall B, Kadekoppala M, et al. The structure of Plasmodium yoelii merozoite surface protein 119, antibody specificity and implications for malaria vaccine design[J]. Open Biol, 2014, 4:130091.
doi: 10.1098/rsob.130091 |
[58] |
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352.
doi: 10.1038/nri.2016.42 |
[59] |
Chakravarty S, Mandal RK, Duff ML, et al. Intestinal short-chain fatty acid composition does not explain gut microbiota-mediated effects on malaria severity[J]. PLoS One, 2019, 14(3):e0214449.
doi: 10.1371/journal.pone.0214449 |
[60] | Stough JM, Dearth SP, Denny JE, et al. Functional characteristics of the gut microbiome in C57BL/6 mice differentially susceptible to Plasmodium yoelii[J]. Front Microbiol, 2016, 7:1520. |
[61] | Morffy Smith CD, Gong MH, Andrew AK, et al. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome[J]. EBio Medicine, 2019, 44:639-655. |
[62] |
Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3):470-480.
doi: 10.1016/j.cell.2012.07.008 pmid: 22863002 |
[1] | 龚艳凤, 李紫芬, 唐乖, 黄美琴, 周炳华, 胡强. 2015—2022年江西省疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 586-592. |
[2] | 耿燕, 兰子尧, 李杨, 戴佳芮, 蔡姗, 卢丽丹, 黄雨婷, 师伟芳, 佘丹娅. 2017—2021年贵州省疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 384-388. |
[3] | 张丽, 易博禹, 尹建海, 夏志贵. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141. |
[4] | 陈朱云, 欧阳榕, 肖丽贞, 林耀莹, 谢汉国, 张山鹰. 福建省疟疾消除后基层监测响应系统现况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 170-175. |
[5] | 陈志辉, 洪劲, 张荣兵, 杨倩, 叶青, 李建荣, 田荣. 2006—2021年昆明市疟疾流行特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 233-237. |
[6] | 刘建成, 许艳, 王龙江, 孔祥礼, 王用斌, 李曰进. 2015—2021年山东省临沂市输入性疟疾疫情监测分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 249-252. |
[7] | 曹得萍, 毋德芳, 庞明泉, 彭小红, 李大宇, 樊海宁. 棘球蚴病患者肠道菌群差异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 103-107. |
[8] | 张耀光, 江莉, 王真瑜, 朱民, 朱倩, 马晓疆, 余晴, 陈健. 2020—2021年上海市7例输入性疟疾病例误判原因分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 68-74. |
[9] | 李素华, 纪鹏慧, 周瑞敏, 贺志权, 钱丹, 杨成运, 刘颖, 鲁德领, 王昊, 张红卫, 赵玉玲. 2015—2019年河南省不同诊断机构疟原虫检测能力评价[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 748-753. |
[10] | 李美, 周何军, 夏志贵, 张丽, 涂宏, 尹建海. 2019年全国疟疾血涂片制作质量评估[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 754-759. |
[11] | 赵卉, 向征, 周隆参, 潘茂华, 杨照青. 阿莫地喹作为抗疟药的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 786-791. |
[12] | 纪鹏慧, 蒋甜甜, 贺志权, 周瑞敏, 李素华, 杨成运, 钱丹, 刘颖, 王昊, 张红卫. 2011—2021年河南省输入性三日疟流行病学特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 801-805. |
[13] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 河北省疟疾消除及消除后媒介种群和密度监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 806-809. |
[14] | 史光忠, 张海亭, 王蒴, 何海波, 程侠, 买买提江·吾买尔, 于琳, 阿衣夏木·克尤木, 赵江山. 新冠肺炎流行期间新疆报告输入性卵形疟1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 689-691. |
[15] | 国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||