[1] | World Health Organization. World malaria report 2020[R]. Geneva: World Health Organization, 2020. | [2] | LYU FL. The interaction between the COVID-19 pandemic and malaria[J/OL]. J Trop Med, 1-6. [2021-05-13]. http://kns.cnki.net/kcms/detail/44.1503.R.20210305.2024.002.html.(in Chinese) | [2] | (吕芳丽. 新型冠状病毒肺炎疫情与疟疾的相互影响[J/OL]. 热带医学杂志: 1-6. [2021-05-13]. http://kns.cnki.net/kcms/detail/44.1503.R.20210305.2024.002.html.) | [3] | Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415):220-230. | [4] | Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie van Leeuwenhoek, 2020, 113(12):2019-2040. | [5] | Xu M, Shen YJ. Progress of research on the interplay between helminth and intestinal protozoa and gut microbiota[J]. Chin J Schisto Control, 2019, 31(1):77-85, 93. (in Chinese) | [5] | (徐梦, 沈玉娟. 蠕虫及肠道原虫感染与肠道菌群关系研究进展[J]. 中国血吸虫病防治杂志, 2019, 31(1):77-85, 93.) | [6] | Wang YY, Liu F, Urban JF Jr, et al. Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome[J]. Int J Parasitol, 2019, 49(3/4):247-256. | [7] | White EC, Houlden A, Bancroft AJ, et al. Manipulation of host and parasite microbiotas: survival strategies during chronic nematode infection[J]. Sci Adv, 2018, 4(3):eaap7399. | [8] | Beatty JK, Akierman SV, Motta JP, et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms[J]. Int J Parasitol, 2017, 47(6):311-326. | [9] | Ippolto MM, Denny JE, Langelier C, et al. Malaria and the microbiome: a systematic review[J]. Clin Infect Dis, 2018, 67(12):1831-1839. | [10] | Yilmaz B, Portugal S, Tran TM, et al. Gut microbiota elicits a protective immune response against malaria transmission[J]. Cell, 2014, 159(6):1277-1289. | [11] | Villarino NF, LeCleir GR, Denny JE, et al. Composition of the gut microbiota modulates the severity of malaria[J]. Proc Natl Acad Sci USA, 2016, 113(8):2235-2240. | [12] | Chinese Society of Microecology, Chinese Preventive Medicine Association. Chinese expert consensus on clinical application of microecological agent in digestive tract (2020 version)[J]. Chin J Microecol, 2020, 32(8):953-965. (in Chinese) | [12] | (中华预防医学会微生态学分会. 中国微生态调节剂临床应用专家共识(2020版)[J]. 中国微生态学杂志, 2020, 32(8):953-965.) | [13] | Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis[J]. Cell Mol Life Sci, 2017, 74(16):2959-2977. | [14] | Pascale A, Marchesi N, Marelli C, et al. Microbiota and metabolic diseases[J]. Endocrine, 2018, 61(3):357-371. | [15] | Ma QQ, Xing CS, Long WY, et al. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis[J]. J Neuroinflammation, 2019, 16(1):53. | [16] | Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases[J]. Curr Neurol Neurosci Rep, 2017, 17(12):94. | [17] | Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders[J]. Ann Med, 2020, 52(8):423-443. | [18] | Kobliner V, Mumper E, Baker SM. Reduction in obsessive compulsive disorder and self-injurious behavior with Saccharomyces boulardii in a child with autism: a case report[J]. Integr Med (Encinitas), 2018, 17(6):38-41. | [19] | Liu YW, Liong MT, Chung YE, et al. Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial[J]. Nutrients, 2019, 11(4):E820. | [20] | Mesripour A, Meshkati A, Hajhashemi V. A synbiotic mixture augmented the efficacy of doxepin, venlafaxine, and fluvoxamine in a mouse model of depression[J]. Turk J Pharm Sci, 2020, 17(3):293-298. | [21] | Kantak PA, Bobrow DN, Nyby JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG)[J]. Behav Pharmacol, 2014, 25(1):71-79. | [22] | Sanikhani NS, Modarressi MH, Jafari P, et al. The effect of Lactobacillus casei consumption in improvement of obsessive-compulsive disorder: an animal study[J]. Probiotics Antimicrob Proteins, 2020, 12(4):1409-1419. | [23] | Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics: a review[J]. J Food Sci Technol, 2015, 52(12):7577-7587. | [24] | Mantziaris V, Kolios G. Gut microbiota, atherosclerosis, and therapeutic targets[J]. Crit Pathw Cardiol, 2019, 18(3):139-142. | [25] | Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe?[J]. Gut, 2020, 69(10):1867-1876. | [26] | Huang YF, Liu XH, Wu H, et al. The relationship between intestinal mucosal barrier and intestinal microflora[J]. Chin J Microecol, 2019, 31(12):1465-1469, 1474. (in Chinese) | [26] | (黄艳芬, 刘湘红, 伍浩, 等. 肠黏膜屏障与肠道菌群的相互关系[J]. 中国微生态学杂志, 2019, 31(12):1465-1469, 1474.) | [27] | Zhu XP, Su C. Human parasitology[M]. 9 ed. Beijing: People’s Medical Publishing House, 2018. (in Chinese). | [27] | (诸欣平, 苏川. 人体寄生虫学[M]. 9版. 北京: 人民卫生出版社, 2018.) | [28] | Wilairatana P, Meddings JB, Ho M, et al. Increased gastrointestinal permeability in patients with Plasmodium falciparum malaria[J]. Clin Infect Dis, 1997, 24(3):430-435. | [29] | Milner DA, Lee JJ, Frantzreb C, et al. Quantitative assessment of multiorgan sequestration of parasites in fatal pediatric cerebral malaria[J]. J Infect Dis, 2015, 212(8):1317-1321. | [30] | Sowunmi A, Ogundahunsi OAT, Falade CO, et al. Gastrointestinal manifestations of acute falciparum malaria in children[J]. Acta Trop, 2000, 74(1):73-76. | [31] | Shimada M, Hirose Y, Shimizu K, et al. Upper gastrointestinal pathophysiology due to mouse malaria Plasmodium berghei ANKA infection[J]. Trop Med Health, 2019, 47:18. | [32] | Taniguchi T, Miyauchi E, Nakamura S, et al. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis[J]. Sci Rep, 2015, 5:15699. | [33] | Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae[J]. Cell Host Microbe, 2007, 2(3):204. | [34] | Ouwerkerk JP, de Vos WM, Belzer C. Glycobiome: bacteria and mucus at the epithelial interface[J]. Best Pract Res Clin Gastroenterol, 2013, 27(1):25-38. | [35] | Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341. | [36] | Haque A, Best SE, Amante FH, et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo[J]. PLoS Pathog, 2010, 6(12):e1001221. | [37] | Fan ZG, Li X, Fu HY, et al. Gut microbiota reconstruction following host infection with blood-stage Plasmodium berghei ANKA strain in a murine model[J]. Curr Med Sci, 2019, 39(6):883-889. | [38] | Denny JE, Powers JB, Castro HF, et al. Differential sensitivity to Plasmodium yoelii infection in C57BL/6 mice impacts gut-liver axis homeostasis[J]. Sci Rep, 2019, 9(1):3472. | [39] | Lorenzo-Zúñiga V, Bartolí R, Planas R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats[J]. Hepatology, 2003, 37(3):551-557. | [40] | Fan ZG. Changes of intestinal microflora and cellular immune and its mechanism in malaria mice in early erythrocytic stage[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese) | [40] | (范志刚. 红内期早期疟鼠肠道菌群和细胞免疫改变及其机制[D]. 武汉: 华中科技大学, 2019.) | [41] | Mandal RK, Crane RJ, Berkley JA, et al. Longitudinal analysis of infant stool bacteria communities before and after acute febrile malaria and artemether-lumefantrine treatment[J]. J Infect Dis, 2019, 220(4):687-698. | [42] | Denny JE, Schmidt NW. Oral administration of clinically relevant antimalarial drugs does not modify the murine gut microbiota[J]. Sci Rep, 2019, 9(1):11952. | [43] | Takem EN, Roca A, Cunnington A. The association between malaria and non-typhoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review[J]. Malar J, 2014, 13(1):1-13. | [44] | Potts RA, Tiffany CM, Pakpour N, et al. Mast cells and histamine alter intestinal permeability during malaria parasite infection[J]. Immunobiology, 2016, 221(3):468-474. | [45] | Chau JY, Tiffany CM, Nimishakavi S, et al. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia[J]. Infect Immun, 2013, 81(10):3515-3526. | [46] | Mooney JP, Butler BP, Lokken KL, et al. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection[J]. Mucosal Immunol, 2014, 7(6):1302-1311. | [47] | Mooney JP, Lokken KL, Byndloss MX, et al. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection[J]. Sci Rep, 2015, 5:14603. | [48] | Alamer E, Carpio VH, Ibitokou SA, et al. Dissemination of non-typhoidal Salmonella during Plasmodium chabaudi infection affects anti-malarial immunity[J]. Parasitol Res, 2019, 118(7):2277-2285. | [49] | Yooseph S, Kirkness EF, Tran TM, et al. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection[J]. BMC Genomics, 2015, 16:631. | [50] | Ngwa CJ, Pradel G. Coming soon: probiotics-based malaria vaccines[J]. Trends Parasitol, 2015, 31(1):2-4. | [51] | Aguilar R, Ubillos I, Vidal M, et al. Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection[J]. Sci Rep, 2018, 8(1):9999. | [52] | Cabezas-Cruz A, Mateos-Hernández L, Alberdi P, et al. Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases[J]. Exp Mol Med, 2017, 49(3):e301. | [53] | de Kivit S, Tobin MC, Forsyth CB, et al. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics[J]. Front Immunol, 2014, 5:60. | [54] | Kumar H, Salminen S, Verhagen H, et al. Novel probiotics and prebiotics: road to the market[J]. Curr Opin Biotechnol, 2015, 32:99-103. | [55] | Pérez-Mazliah D, Ng DH, Freitas do Rosário AP, et al. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria[J]. PLoS Pathog, 2015, 11(3):e1004715. | [56] | Butler NS, Moebius J, Pewe LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2):188-195. | [57] | Curd RD, Birdsall B, Kadekoppala M, et al. The structure of Plasmodium yoelii merozoite surface protein 119, antibody specificity and implications for malaria vaccine design[J]. Open Biol, 2014, 4:130091. | [58] | Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352. | [59] | Chakravarty S, Mandal RK, Duff ML, et al. Intestinal short-chain fatty acid composition does not explain gut microbiota-mediated effects on malaria severity[J]. PLoS One, 2019, 14(3):e0214449. | [60] | Stough JM, Dearth SP, Denny JE, et al. Functional characteristics of the gut microbiome in C57BL/6 mice differentially susceptible to Plasmodium yoelii[J]. Front Microbiol, 2016, 7:1520. | [61] | Morffy Smith CD, Gong MH, Andrew AK, et al. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome[J]. EBio Medicine, 2019, 44:639-655. | [62] | Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3):470-480. |
|