[1] | Ma L, Li Y, Peng JY, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration[J]. Cell Res, 2015, 25(1):24-38. | [2] | Xie F, Zhou X, Fang M, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy[J]. Adv Sci, 2019, 6(24):1901779. | [3] | Ofir-Birin Y, Regev-Rudzki N. Extracellular vesicles in parasite survival[J]. Science, 2019, 363(6429):817-818. | [4] | Schwartz C, Fallon PG. Schistosoma ‘eggs-iting’ the host: granuloma formation and egg excretion[J]. Front Immunol, 2018, 9:2492. | [5] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. | [6] | Lawrence E, John S, Peter Q, et al. Exosomes[M]. 2020: 179-198. | [7] | Liu L, Yang Y, Gao X, et al. Preliminary prevention effect of Trichinella spiralis extracellular vesicles on TNBS-induced experimental colitis in mice[J]. Prog Vet Med, 2020, 41(5):67-73. (in Chinese) | [7] | (刘蕾, 杨勇, 高欣, 等. 旋毛虫细胞外囊泡对TNBS诱导的小鼠实验性结肠炎的初步干预作用[J]. 动物医学进展, 2020, 41(5):67-73.) | [8] | Nawaz M, Malik MI, Hameed M, et al. Research progress on the composition and function of parasite-derived exosomes[J]. Acta Trop, 2019, 196:30-36. | [9] | Shen H, Liu CY, Zhao YM. Extracellular vesicles of parasites: research development and prospect[J]. Chin J Parasitol Parasit Dis, 2018, 36(4):413-417. (in Chinese) | [9] | (沈辉, 刘春英, 赵玉敏. 寄生虫细胞外囊泡的研究现状及展望[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4):413-417.) | [10] | Huang L, Ye CL, Sheng Y, et al. Advances in research on parasite exosomal miRNA[J]. J Pathog Biol, 2019, 14(9):1115-1118. (in Chinese) | [10] | (黄琳, 叶昌林, 生燕, 等. 外泌体miRNA在寄生虫中的进展[J]. 中国病原生物学杂志, 2019, 14(9):1115-1118.) | [11] | Whitehead B, Boysen AT, Mardahl M, et al. Unique glycan and lipid composition of helminth-derived extracellular vesicles may reveal novel roles in host-parasite interactions[J]. Int J Parasitol, 2020, 50(9):647-654. | [12] | Andrade G, Bertsch DJ, Gazzinelli A, et al. Decline in infection-related morbidities following drug-mediated reductions in the intensity of Schistosoma infection: a systematic review and meta-analysis[J]. PLoS Negl Trop Dis, 2017, 11(2):e0005372. | [13] | Sun CS, Hu W, Wang TP. Advances in research on schistosome-host interactions mediated by extracellular vesicles[J]. Chin J Parasitol Parasit Dis, 2020, 38(3):378-382. (in Chinese) | [13] | (孙成松, 胡薇, 汪天平. 胞外囊泡介导血吸虫与宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3):378-382.) | [14] | Sotillo J, Pearson M, Potriquet J, et al. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates[J]. Int J Parasitol, 2016, 46(1):1-5. | [15] | Gómez-Arreaza A, Acosta H, Quiñones W, et al. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins[J]. Mol Biochem Parasitol, 2014, 193(2):75-81. | [16] | Caraballo L, Coronado S. Parasite allergens[J]. Mol Immunol, 2018, 100:113-119. | [17] | Rinaldi G, Morales ME, Alrefaei YN, et al. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs[J]. Mol Biochem Parasitol, 2009, 167(2):118-126. | [18] | Kifle DW, Pearson MS, Becker L, et al. Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15 k pellet and 120 k pellet vesicles[J]. Mol Biochem Parasitol, 2020, 236:111264. | [19] | Bexkens ML, van Gestel RA, van Breukelen B, et al. Schistosoma mansoni infection affects the proteome and lipidome of circulating extracellular vesicles in the host[J]. Mol Biochem Parasitol, 2020, 238:111296. | [20] | Nowacki FC, Swain MT, Klychnikov OI, et al. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni[J]. J Extracell Vesicles, 2015, 4:28665. | [21] | Arbelaiz A, Azkargorta M, Krawczyk M, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma[J]. Hepatology, 2017, 66(4):1125-1143. | [22] | Corral-Ruiz GM, Sánchez-Torres LE. Fasciola hepatica-derived molecules as potential immunomodulators[J]. Acta Trop, 2020, 210:105548. | [23] | de la Torre-Escudero E, Gerlach JQ, Bennett APS, et al. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells[J]. PLoS Negl Trop Dis, 2019, 13(1):e0007087. | [24] | Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes[J]. Curr Opin Cell Biol, 2014, 29:116-125. | [25] | Chaiyadet S, Sotillo J, Smout M, et al. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype[J]. J Infect Dis, 2015, 212(10):1636-1645. | [26] | Alvarez Rojas CA, Kronenberg PA, Aitbaev S, et al. Genetic diversity of Echinococcus multilocularis and Echinococcus granulosus sensu lato in Kyrgyzstan: the A2 haplotype of E. multilocularis is the predominant variant infecting humans[J]. PLoS Negl Trop Dis, 2020, 14(5):e0008242. | [27] | Nicolao MC, Rodriguez Rodrigues C, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: isolation, characterization and uptake by dendritic cells[J]. PLoS Negl Trop Dis, 2019, 13(1):e0007032. | [28] | Zhou X, Wang W, Cui F, et al. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: isolation, characterization and evaluation of immunomodulatory functions on T cells[J]. Int J Parasitol, 2019, 49(13/14):1029-1037. | [29] | Siles-Lucas M, Sánchez-Ovejero C, González-Sánchez M, et al. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts[J]. Vet Parasitol, 2017, 236:22-33. | [30] | Arias-Hernández D, García-Jiménez S, Domínguez-Roldan R, et al. Effects of Taenia pisiformis infection and obesity on clinical parameters, organometry and fat distribution in male rabbits[J]. Pathogens, 2020, 9(11):861. | [31] | Wang LQ, Liu TL, Liang PH, et al. Characterization of exosome-like vesicles derived from Taenia pisiformis cysticercus and their immunoregulatory role on macrophages[J]. Parasites Vectors, 2020, 13(1):318. | [32] | Sadaow L, Sanpool O, Phosuk I, et al. Molecular identification of Ascaris lumbricoides and Ascaris suum recovered from humans and pigs in Thailand, Lao PDR, and Myanmar[J]. Parasitol Res, 2018, 117(8):2427-2436. | [33] | Hansen EP, Fromm B, Andersen SD, et al. Exploration of extracellular vesicles from Ascaris suum provides evidence of parasite-host cross talk[J]. J Extracell Vesicles, 2019, 8(1):1578116. | [34] | Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation[J]. PLoS Biol, 2012, 10(12):e1001450. | [35] | Gordon CA, Jones MK, McManus DP. The history of bancroftian lymphatic filariasis in Australasia and Oceania: is there a threat of re-occurrence in mainland Australia?[J]. Trop Med Infect Dis, 2018, 3(2):E58. | [36] | Harischandra H, Yuan W, Loghry HJ, et al. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin[J]. PLoS Neglected Trop Dis, 2018, 12(4):e0006438. | [37] | Sánchez-Valdéz FJ, Padilla A, Wang W, et al. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure[J]. Elife, 2018, 7:e34039. | [38] | Cronemberger-Andrade A, Xander P, Soares RP, et al. Trypanosoma cruzi-infected human macrophages shed proinflammatory extracellular vesicles that enhance host-cell invasion via toll-like receptor 2[J]. Front Cell Infect Microbiol, 2020, 10:99. | [39] | Urményi TP, Silva R, Rondinelli E. The heat shock proteins of Trypanosoma cruzi[J]. Subcell Biochem, 2014, 74:119-135. | [40] | Kengne-Ouafo JA, Sutherland CJ, Binka FN, et al. Immune responses to the sexual stages of Plasmodium falciparum parasites[J]. Front Immunol, 2019, 10:136. | [41] | Demarta-Gatsi C, Rivkin A, Di Bartolo V, et al. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses[J]. Cell Microbiol, 2019, 21(7):e13021. | [42] | Nandan D, Yi TL, Lopez M, et al. Leishmania EF-1α activates the src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation[J]. J Biol Chem, 2002, 277(51):50190-50197. | [43] | Toda H, Diaz-Varela M, Segui-Barber J, et al. Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-kB facilitating parasite cytoadherence[J]. Nat Commun, 2020, 11:2761. | [44] | Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D, et al. Proteomics study of human cord blood reticulocyte-derived exosomes[J]. Sci Rep, 2018, 8(1):14046. | [45] | Bernabeu M, Lopez FJ, Ferrer M, et al. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor[J]. Cell Microbiol, 2012, 14(3):386-400. | [46] | Medina G, Leyán P, da Silva CV, et al. Intra-amoebic localization of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii[J]. Arch Microbiol, 2019, 201(10):1447-1452. | [47] | Lin WC, Tsai CY, Huang JM, et al. Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles[J]. Parasit Vectors, 2019, 12(1):467. | [48] | Gonçalves DS, Ferreira MDS, Liedke SC, et al. Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells[J]. Virulence, 2018, 9(1):818-836. | [49] | Zhang Y, Lai BS, Juhas M, et al. Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis[J]. Microbiol Res, 2019, 227:126293. | [50] | Wowk PF, Zardo ML, Miot HT, et al. Proteomic profiling of extracellular vesicles secreted from Toxoplasma gondii[J]. Proteomics, 2017, 17(15/16):1600477. | [51] | Li PJ, Zuo SQ, Duan YJ, et al. Advances in research on exosomes of Toxoplasma spp.[J]. Chin J Parasitol Parasit Dis, 2020, 38(5):653-658. (in Chinese) | [51] | (李朋举, 左素琼, 段玉娟, 等. 弓形虫外泌体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5):653-658.) | [52] | Ramírez-Flores CJ, Cruz-Mirón R, Mondragón-Castelán ME, et al. Proteomic and structural characterization of self-assembled vesicles from excretion/secretion products of Toxoplasma gondii[J]. J Proteomics, 2019, 208:103490. | [53] | Leroux LP, Dasanayake D, Rommereim LM, et al. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages[J]. Int J Parasitol, 2015, 45(5):319-332. | [54] | Rezaei F, Sarvi S, Sharif M, et al. A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization[J]. Microb Pathog, 2019, 126:172-184. | [55] | Calero-Bernal R, Horcajo P, Hernández M, et al. Absence of Neospora caninum DNA in human clinical samples, Spain[J]. Emerg Infect Dis, 2019, 25(6):1226-1227. | [56] | Li S, Gong P, Tai L, et al. Extracellular vesicles secreted by Neospora caninum are recognized by Toll-Like receptor 2 and modulate host cell innate immunity through the MAPK signaling pathway[J]. Front Immunol, 2018, 9:1633. |
|