[1] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. | [2] | Deplazes P, Rinaldi L, Alvarez Rojas CA, et al. Global distribution of alveolar and cystic echinococcosis[J]. Adv Parasitol, 2017, 95: 315-493. | [3] | Wen H, Tuerganaili AJ, Shao YM, et al. Research achievements and challenges for echinococcosis control[J]. Chin J Parasitol Parasit Dis, 2015, 33(6): 466-471. (in Chinese) | | (温浩, 吐尔干艾力?阿吉, 邵英梅, 等. 棘球蚴病防治成就及面临的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(6): 466-471.) | [4] | Woolsey ID, Miller AL. Echinococcus granulosus sensu lato and Echinococcus multilocularis: a review[J]. Res Vet Sci, 2021, 135: 517-522. | [5] | Gottstein B, Wang JH, Boubaker G, et al. Susceptibility versus resistance in alveolar echinococcosis (larval infection with Echinococcus multilocularis)[J]. Vet Parasitol, 2015, 213(3/4): 103-109. | [6] | Takahashi T, Dejbakhsh-Jones S, Strober S. Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T cells with different functional activities[J]. J Immunol, 2006, 176(1): 211-216. | [7] | Assarsson E, Kambayashi T, Sandberg JK, et al. CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo[J]. J Immunol, 2000, 165(7): 3673-3679. | [8] | Cardillo F, Voltarelli JC, Reed SG, et al. Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells[J]. Infect Immun, 1996, 64(1): 128-134. | [9] | Cardillo F, Cunha FQ, Tamashiro WM, et al. NK1.1+ cells and T-cell activation in euthymic and thymectomized C57BL/6 mice during acute Trypanosoma cruzi infection[J]. Scand J Immunol, 2002, 55(1): 96-104. | [10] | Wikenheiser DJ, Brown SL, Lee J, et al. NK1.1 expression defines a population of CD4+ effector T cells displaying Th1 and Tfh cell properties that support early antibody production during Plasmodium yoelii infection[J]. Front Immunol, 2018, 9: 2277. | [11] | Muxel SM, Freitas do Rosário AP, Sardinha LR, et al. Comparative analysis of activation phenotype, proliferation, and IFN-gamma production by spleen NK1.1+ and NK1.1- T cells during Plasmodium chabaudi AS malaria[J]. J Interferon Cytokine Res, 2010, 30(6): 417-426. | [12] | Zhang CS, Wang JH, Lü GD, et al. Hepatocyte proliferation/growth arrest balance in the liver of mice during E. multilocularis infection: a coordinated 3-stage course[J]. PLoS One, 2012, 7(1): e30127. | [13] | Autier B, Gottstein B, Millon L, et al. Alveolar echinococcosis in immunocompromised hosts[J]. Clin Microbiol Infect, 2023, 29(5): 593-599. | [14] | Lachenmayer A, Gebbers D, Gottstein B, et al. Elevated incidence of alveolar echinococcosis in immunocompromised patients[J]. Food Waterborne Parasitol, 2019, 16: e00060. | [15] | Shi Y, Abidan ANWE, Li DW, et al. Effect of Echinococcus multilocularis infection on Tim3 expression in spleen natural killer cells of mice[J]. Chin J Schisto Control, 2023, 35(4): 366-373. (in Chinese) | | (施阳, 阿比旦?艾尼瓦尔, 李德伟, 等. 多房棘球蚴感染对小鼠脾脏自然杀伤细胞Tim3表达的影响[J]. 中国血吸虫病防治杂志, 2023, 35(4): 366-373.) | [16] | Hou XL, Li L, Li LH, et al. Exhaustion of CD8+ T cell immune functions in spleen of mice with different doses of Echinococcus multilocularis infections[J]. Chin J Schisto Control, 2020, 32(6): 591-597. (in Chinese) | | (侯昕伶, 李亮, 李玲慧, 等. 泡球蚴感染对小鼠脾脏CD8+ T细胞免疫功能耗竭的影响[J]. 中国血吸虫病防治杂志, 2020, 32(6): 591-597.) | [17] | Wang JH, Jebbawi F, Bellanger AP, et al. Immunotherapy of alveolar echinococcosis via PD-1/PD-L1 immune checkpoint blockade in mice[J]. Parasite Immunol, 2018, 40(12): e12596. | [18] | Zibigu RS, Abidan ANWE, Adilai DLK, et al. Effect of LAG3 deficiency on natural killer cell function and hepatic fibrosis in mice infected with Echinococcus multilocularis[J]. Chin J Schisto Control, 2024, 36(1): 59-66. (in Chinese) | | (孜比姑?肉素, 阿比旦?艾尼瓦尔, 阿迪莱?多力坤, 等. LAG3缺陷对多房棘球蚴感染小鼠自然杀伤细胞功能及肝纤维化的影响[J]. 中国血吸虫病防治杂志, 2024, 36(1): 59-66.) | [19] | Zhang CS, Lin RY, Li ZD, et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model[J]. Hepatology, 2020, 71(4): 1297-1315. | [20] | Vicari AP, Zlotnik A. Mouse NK1.1+ T cells: a new family of T cells[J]. Immunol Today, 1996, 17(2): 71-76. | [21] | Berriel E, Freire T, Chiale C, et al. Human hydatid cyst fluid-induced therapeutic anti-cancer immune responses via NK1.1+ cell activation in mice[J]. Cancer Immunol Immunother, 2021, 70(12): 3617-3627. | [22] | Park HJ, Lee SW, Park YH, et al. CD1d-independent NK1.1+ Treg cells are IL2-inducible Foxp3+ T cells co-expressing immunosuppressive and cytotoxic molecules[J]. Front Immunol, 2022, 13: 951592. | [23] | Li DW, Ainiwaer A, Zheng XR, et al. Upregulation of LAG3 modulates the immune imbalance of CD4+ T-cell subsets and exacerbates disease progression in patients with alveolar echinococcosis and a mouse model[J]. PLoS Pathog, 2023, 19(5): e1011396. | [24] | Zhang CS, Wang H, Li J, et al. Involvement of TIGIT in natural killer cell exhaustion and immune escape in patients and mouse model with liver Echinococcus multilocularis infection[J]. Hepatology, 2021, 74(6): 3376-3393. | [25] | Hou XL, Li DW, Shi Y, et al. Changes of ST2+ T cell subset function and their immune checkpoint molecule expression in the peritoneal cavity of mice infected with Echinococcus multilocularis[J]. Chin J Parasitol Parasit Dis, 2022, 40(6): 708-716. (in Chinese) | | (侯昕伶, 李德伟, 施阳, 等. 多房棘球蚴感染小鼠腹腔ST2+ T细胞亚群功能及其免疫检查点分子表达变化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 708-716.) | [26] | Li JT, Zhao HY, Lv GD, et al. Phenotype and function of MAIT cells in patients with alveolar echinococcosis[J]. Front Immunol, 2024, 15: 1343567. |
|