[1] | Carr AL, Roe M. Acarine attractants: chemoreception, bioassay, chemistry and control[J]. Pestic Biochem Physiol, 2016, 131: 60-79. | [2] | Zhang GS, Zheng D, Tian YQ, et al. A dataset of distribution and diversity of ticks in China[J]. Sci Data, 2019, 6(1): 105. | [3] | Vandegrift KJ, Kapoor A. The ecology of new constituents of the tick virome and their relevance to public health[J]. Viruses, 2019, 11(6): 529. | [4] | Wikel SK. Ticks and tick-borne infections: complex ecology, agents, and host interactions[J]. Vet Sci, 2018, 5(2): 60. | [5] | Hao XF, Yin H, Luo JX. Advance in the chemical and immunological controls of ticks[J]. Prog Vet Med, 2008, 29(12): 52-56. (in Chinese) | [5] | (郝雪峰, 殷宏, 罗建勋. 蜱的化学和免疫学防治研究进展[J]. 动物医学进展, 2008, 29(12): 52-56.) | [6] | Koloski CW, Cassone BJ. Transcriptional profiling of Dermacent-or variabilis (Acari ∶ Ixodidae) provides insights into the role of the Haller’s organ in spatial DEET recognition[J]. Ticks Tick Borne Dis, 2022, 13(1): 101827. | [7] | Josek T, Allan BF, Alleyne M. Morphometric analysis of chemoreception organ in male and female ticks (Acari ∶ Ixodidae)[J]. J Med Entomol, 2018, 55(3): 547-552. | [8] | Leonovich SA, Belozerov VN. Regeneration of Haller’s sensory organ in two species of hard ticks of the genus Haemaphysalis (Acari ∶ Ixodidae)[J]. Exp Appl Acarol, 2004, 33(1/2): 131-144. | [9] | Belozerov VN, Leonovich SA. Pathways of regeneration of Haller’s sensory organ during the life cycle of the tick Hyalomma asiaticum[J]. J Exp Zool, 1995, 271(3): 196-204. | [10] | Mcmahon C, Kröber T, Guerin PM. In vitro assays for repellents and deterrents for ticks: differing effects of products when tested with attractant or arrestment stimuli[J]. Med Vet Entomol, 2003, 17(4): 370-378. | [11] | Steullet P, Guerin PM. Identification of vertebrate volatiles stimulating olfactory receptors on tarsus I of the tick Amblyomma variegatum Fabricius (Ixodidae). I. Receptors within the Haller’s organ capsule[J]. J Comp Physiol A, 1994, 174(1): 27-38. | [12] | Faraone N, Light M, Scott C, et al. Chemosensory and behavioural responses of Ixodes scapularis to natural products: role of chemosensory organs in volatile detection[J]. Insects, 2020, 11(8): 502. | [13] | Leonovich SA. Phenol and lactone receptors in the distal sensilla of the Haller’s organ in Ixodes ricinus ticks and their possible role in host perception[J]. Exp Appl Acarol, 2004, 32(1/2): 89-102. | [14] | Josek T, Sperrazza J, Alleyne M, et al. Neurophysiological and behavioral responses of blacklegged ticks to host odors[J]. J Insect Physiol, 2021, 128: 104175. | [15] | Romashchenko AV, Ratushnyak AS, Zapara TA, et al. The correlation between tick (Ixodes persulcatus Sch.) questing behaviour and synganglion neuronal responses to odours[J]. J Insect Physiol, 2012, 58(7): 903-910. | [16] | Mitchell RD III, Zhu JW, Carr AL, et al. Infrared light detection by the Haller’s organ of adult American dog ticks, Dermacentor variabilis (Ixodida ∶ Ixodidae)[J]. Ticks Tick Borne Dis, 2017, 8(5): 764-771. | [17] | Sun Y, Qin T. Recent advance of ticks’ chemosensory and neurophysiology as potential acaricides targets[J]. Acta Parasitol Med Entomol Sin, 2019, 26(2): 124-134. (in Chinese) | [17] | (孙毅, 秦通. 蜱类化学感应和神经生理学研究进展及其对药物研发的启示[J]. 寄生虫与医学昆虫学报, 2019, 26(2): 124-134.) | [18] | Chaisson KE, Hallem EA. Chemosensory behaviors of parasites[J]. Trends Parasitol, 2012, 28(10): 427-436. | [19] | Renthal R, Manghnani L, Bernal S, et al. The chemosensory appendage proteome of Amblyomma americanum (Acari ∶ Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins[J]. Insect Sci, 2017, 24(5): 730-742. | [20] | Josek T, Walden KKO, Allan BF, et al. A foreleg transcriptome for Ixodes scapularis ticks: candidates for chemoreceptors and binding proteins that might be expressed in the sensory Haller’s organ[J]. Ticks Tick Borne Dis, 2018, 9(5): 1317-1327. | [21] | Iovinella I, Ban LP, Song LM, et al. Proteomic analysis of Castorbean tick Ixodes ricinus: a focus on chemosensory organs[J]. Insect Biochem Mol Biol, 2016, 78: 58-68. | [22] | Rimal S, Lee Y. The multidimensional ionotropic receptors of Drosophila melanogaster[J]. Insect Mol Biol, 2018, 27(1): 1-7. | [23] | Carr AL, Mitchell RD Ⅲ, Dhammi A, et al. Tick Haller’s organ, a new paradigm for arthropod olfaction: how ticks differ from insects[J]. Int J Mol Sci, 2017, 18(7): 1563. | [24] | Bigiani A, Mucignat-Caretta C, Montani G, et al. Pheromone reception in mammals[J]. Rev Physiol Biochem Pharmacol, 2005, 154: 1-35. | [25] | Wang P, Zhao SC, Huang ZD, et al. A review on methods for screening tick repellents[J]. Chin J Hyg Insectic Equip, 2018, 24(5): 505-508, 511. (in Chinese) | [25] | (王萍, 赵树超, 黄振东, 等. 蜱虫驱避剂筛选的常用方法[J]. 中华卫生杀虫药械, 2018, 24(5): 505-508, 511.) | [26] | Legeay S, Clere N, Apaire-Marchais V, et al. Unusual modes of action of the repellent DEET in insects highlight some human side effects[J]. Eur J Pharmacol, 2018, 825: 92-98. | [27] | Adenubi OT, McGaw LJ, Eloff JN, et al. In vitro bioassays used in evaluating plant extracts for tick repellent and acaricidal properties: a critical review[J]. Vet Parasitol, 2018, 254: 160-171. | [28] | Buchel K, Bendin J, Gharbi A, et al. Repellent efficacy of DEET, Icaridin, and EBAAP against Ixodes ricinus and Ixodes scapularis nymphs (Acari, Ixodidae)[J]. Ticks Tick Borne Dis, 2015, 6(4): 494-498. | [29] | Pages F, Dautel H, Duvallet G, et al. Tick repellents for human use: prevention of tick bites and tick-borne diseases[J]. Vector Borne Zoonotic Dis, 2014, 14(2): 85-93. | [30] | Gliniewicz A, Borecka A, Przygodzka M, et al. Susceptibility of Dermacentor reticulatus tick to repellents containing different active ingrediens[J]. Przegl Epidemiol, 2019, 73(1): 117-125. | [31] | Mitchell C, Dyer M, Lin FC, et al. Protective effectiveness of long-lasting permethrin impregnated clothing against tick bites in an endemic Lyme disease setting: a randomized control trial among outdoor workers[J]. J Med Entomol, 2020, 57(5): 1532-1538. | [32] | da Silva MRM, Ricci-Júnior E. An approach to natural insect repellent formulations: from basic research to technological development[J]. Acta Trop, 2020, 212: 105419. | [33] | Maia MF, Moore SJ. Plant-based insect repellents: a review of their efficacy, development and testing[J]. Malar J, 2011, 10(Suppl 1): S11. | [34] | Rehman JU, Ali A, Khan IA. Plant based products: use and development as repellents against mosquitoes: a review[J]. Fitoterapia, 2014, 95: 65-74. | [35] | Elmhalli FH, Pålsson K, Orberg J, et al. Acaricidal effects of Corymbia citriodora oil containing Para-menthane-3, 8-diol against nymphs of Ixodes ricinus (Acari ∶ Ixodidae)[J]. Exp Appl Acarol, 2009, 48(3): 251-262. | [36] | Nwanade CF, Wang M, Wang T, et al. Botanical acaricides and repellents in tick control: current status and future directions[J]. Exp Appl Acarol, 2020, 81(1): 1-35. | [37] | Koloski CW, LeMoine CMR, Klonowski AR, et al. Molecular evidence for the inhibition of cytochrome p450s and cholinesterases in ticks by the repellent DEET[J]. Ticks Tick Borne Dis, 2019, 10(3): 515-522. |
|