[1] | WHO. World Malaria Report 2020[R]. Geneva: WHO, 2020. | [2] | Aly AS, Vaughan AM, Kappe SH. Malaria parasite development in the mosquito and infection of the mammalian host[J]. Annu Rev Microbiol, 2009, 63:195-221. | [3] | Yassine H, Osta MA. Anopheles gambiae innate immunity[J]. Cell Microbiol, 2010, 12(1):1-9. | [4] | Smith RC, Joel VR, Marcelo JL. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. Memórias Do Instituto Oswaldo Cruz, 2014, 109(5):644-661. | [5] | Foster WA. Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40:443-474. | [6] | Barredo E, [R] M. Not just from blood: mosquito nutrient acquisition from nectar sources[J]. Trends Parasitol, 2020, 36(5):473-484. | [7] | Lea AO, Dimond JB, DeLong DM. Role of diet in egg development by mosquitoes (Aedes aegypti)[J]. Science, 1956, 123(3203):890-891. | [8] | Billingsley PF, Hecker H. Blood digestion in the mosquito, Anopheles stephensi liston (Diptera ∶ Culicidae) and distribution of trypsin, aminopeptidase, and α-glucosidase in the midgut[J]. J Med Entomol, 1991, 28(6):865-871. | [9] | Dana AN, Hong YS, Kern MK, et al. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae[J]. BMC Genomics, 2005, 6:5. | [10] | Manda H, Gouagna LC, Nyandat E, et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya[J]. Med Vet Entomol, 2007, 21(1):103-111. | [11] | Manda H, Gouagna LC, Foster WA, et al. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae[J]. Malar J, 2007, 6:113. | [12] | Yu BT, Hu Y, Ding YM, et al. Feeding on different attractive flowering plants affects the energy reserves of Culex pipiens pallens adults[J]. Parasitol Res, 2018, 117(1):67-73. | [13] | Gouagna LC, Kerampran R, Lebon C, et al. Sugar-source preference, sugar intake and relative nutritional benefits in Anopheles arabiensis males[J]. Acta Trop, 2014, 132:S70-S79. | [14] | Hien DF, Dabiré KR, Roche B, et al. Plant-mediated effects on mosquito capacity to transmit human malaria[J]. PLoS Pathog, 2016, 12(8):e1005773. | [15] | Becker A, Schlöder P, Steele JE, et al. The regulation of trehalose metabolism in insects[J]. Experientia, 1996, 52(5):433-439. | [16] | Wang M, An Y, Gao L, et al. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH[J]. Cell Rep, 2021, 35(3):108992. | [17] | Liu K, Dong Y, Huang Y, et al. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection[J]. Proc Natl Acad Sci USA, 2013, 110(43):17504-17509. | [18] | Surachetpong W, Pakpour N, Cheung KW, et al. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum[J]. Antioxid Redox Signal, 2011, 14(6):943-955. | [19] | Pakpour N, Corby-Harris V, Green GP, et al. Ingested human insulin inhibits the mosquito NF-κB-dependent immune response to Plasmodium falciparum[J]. Infect Immun, 2012, 80(6):2141-2149. | [20] | Pietri JE, Pakpour N, Napoli E, et al. Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism[J]. Biochem J, 2016, 473(20):3487-3503. | [21] | Nyasembe VO, Teal PEA, Sawa P, et al. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake[J]. Curr Biol, 2014, 24(2):217-221. | [22] | Reynolds JA, Poelchau MF, Rahman Z, et al. Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus[J]. J Insect Physiol, 2012, 58(7):966-973. | [23] | Zhou G, Miesfeld RL. Energy metabolism during diapause in Culex pipiens mosquitoes[J]. J Insect Physiol, 2009, 55(1):40-46. | [24] | van Handel E. Fuel metabolism of the mosquito (Culex quinquefasciatus) embryo[J]. J Insect Physiol, 1993, 39(10):831-833. | [25] | Chotiwan N, Andre BG, Sanchez-Vargas I, et al. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes[J]. PLoS Pathog, 2018, 14(2):e1006853. | [26] | Atella GC, Bittencourt-Cunha PR, Nunes RD, et al. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite[J]. Acta Trop, 2009, 109(2):159-162. | [27] | Werling K, Shaw WR, Itoe MA, et al. Steroid hormone function controls non-competitive Plasmodium development in Anopheles[J]. Cell, 2019, 177(2): 315-325. e14. | [28] | Costa G, Eldering M, Lindquist RL, et al. Mosquito lipids regulate Plasmodium sporogony and infectivity to the mammalian host[J/OL]. bioRxiv, 2017. https://www.biorxiv.org/content/10. 1101/149443v1. | [29] | Cheon HM, Shin SW, Bian G, et al. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti[J]. J Biol Chem, 2006, 281(13):8426-8435. | [30] | Gupta L, Noh JY, Jo YH, et al. Apolipophorin-Ⅲ mediates antiplasmodial epithelial responses in Anopheles gambiae (G3) mosquitoes[J]. PLoS One, 2010, 5(11):e15410. | [31] | Hansen IA, Attardo GM, Park JH, et al. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny[J]. Proc Natl Acad Sci USA, 2004, 101(29):10626-10631. | [32] | Hansen IA, Attardo GM, Roy SG, et al. Target of rapamycin-dependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito[J]. J Biol Chem, 2005, 280(21):20565-20572. | [33] | Sherman IW. Amino acid metabolism and protein synjournal in malarial parasites[J]. Bull World Health Organ, 1977, 55(2/3):265-276. | [34] | Payne SH, Loomis WF. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences[J]. Eukaryot Cell, 2006, 5(2):272-276. | [35] | Liu J, Istvan ES, Gluzman IY, et al. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems[J]. Proc Natl Acad Sci USA, 2006, 103(23):8840-8845. | [36] | Arai M, Billker O, Morris HR, et al. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito[J]. Mol Biochem Parasitol, 2001, 116(1):17-24. | [37] | Lampe L, Jentzsch M, Kierszniowska S, et al. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development[J]. Nat Commun, 2019, 10(1):5634. | [38] | Fuchs S, Behrends V, Bundy JG, et al. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito[J]. PLoS One, 2014, 9(1):e84865. | [39] | Oliveira JH, Gonçalves RL, Oliveira GA, et al. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection[J]. Insect Biochem Mol Biol, 2011, 41(6):349-355. |
|