中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (5): 617-620.doi: 10.12140/j.issn.1000-7423.2021.05.009
收稿日期:
2021-10-11
修回日期:
2021-10-26
出版日期:
2021-10-30
发布日期:
2021-11-10
通讯作者:
王敬文
作者简介:
宋秀梅(1989-),女,博士后,主要从事媒介生物学研究。E-mail: meixiusong@163.com
基金资助:
SONG Xiu-mei1,2(), WANG Jing-wen1,2,*(
)
Received:
2021-10-11
Revised:
2021-10-26
Online:
2021-10-30
Published:
2021-11-10
Contact:
WANG Jing-wen
Supported by:
摘要:
营养代谢为蚊虫提供多种营养物质和信号分子,保证其正常生长、发育和繁殖。同时,疟原虫也可利用按蚊的营养代谢获取养料,保证自身的发育增殖。疟原虫入侵按蚊后对按蚊营养代谢的影响,以及营养代谢在病原体入侵时如何影响蚊虫自身生殖发育、免疫反应等生理变化目前还不清楚。本文分别从糖代谢、脂代谢、氨基酸代谢等方面总结按蚊营养代谢与疟原虫之间的互作关系,为蚊媒传染病的防控提供借鉴。
中图分类号:
宋秀梅, 王敬文. 营养代谢对按蚊传播疟原虫能力的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 617-620.
SONG Xiu-mei, WANG Jing-wen. Influence of nutritional metabolism of Anopheles on its transmission capability of malaria parasites[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(5): 617-620.
[1] | WHO. World Malaria Report 2020[R]. Geneva: WHO, 2020. |
[2] |
Aly AS, Vaughan AM, Kappe SH. Malaria parasite development in the mosquito and infection of the mammalian host[J]. Annu Rev Microbiol, 2009, 63:195-221.
doi: 10.1146/micro.2009.63.issue-1 |
[3] |
Yassine H, Osta MA. Anopheles gambiae innate immunity[J]. Cell Microbiol, 2010, 12(1):1-9.
doi: 10.1111/j.1462-5822.2009.01388.x pmid: 19804484 |
[4] |
Smith RC, Joel VR, Marcelo JL. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. Memórias Do Instituto Oswaldo Cruz, 2014, 109(5):644-661.
doi: 10.1590/0074-0276130597 |
[5] |
Foster WA. Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40:443-474.
pmid: 7810991 |
[6] |
Barredo E, [R] M. Not just from blood: mosquito nutrient acquisition from nectar sources[J]. Trends Parasitol, 2020, 36(5):473-484.
doi: S1471-4922(20)30040-4 pmid: 32298634 |
[7] |
Lea AO, Dimond JB, DeLong DM. Role of diet in egg development by mosquitoes (Aedes aegypti)[J]. Science, 1956, 123(3203):890-891.
doi: 10.1126/science.123.3203.890 |
[8] |
Billingsley PF, Hecker H. Blood digestion in the mosquito, Anopheles stephensi liston (Diptera ∶ Culicidae) and distribution of trypsin, aminopeptidase, and α-glucosidase in the midgut[J]. J Med Entomol, 1991, 28(6):865-871.
pmid: 1770523 |
[9] |
Dana AN, Hong YS, Kern MK, et al. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae[J]. BMC Genomics, 2005, 6:5.
pmid: 15651988 |
[10] |
Manda H, Gouagna LC, Nyandat E, et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya[J]. Med Vet Entomol, 2007, 21(1):103-111.
pmid: 17373953 |
[11] |
Manda H, Gouagna LC, Foster WA, et al. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae[J]. Malar J, 2007, 6:113.
doi: 10.1186/1475-2875-6-113 |
[12] |
Yu BT, Hu Y, Ding YM, et al. Feeding on different attractive flowering plants affects the energy reserves of Culex pipiens pallens adults[J]. Parasitol Res, 2018, 117(1):67-73.
doi: 10.1007/s00436-017-5664-y |
[13] |
Gouagna LC, Kerampran R, Lebon C, et al. Sugar-source preference, sugar intake and relative nutritional benefits in Anopheles arabiensis males[J]. Acta Trop, 2014, 132:S70-S79.
doi: 10.1016/j.actatropica.2013.09.022 |
[14] |
Hien DF, Dabiré KR, Roche B, et al. Plant-mediated effects on mosquito capacity to transmit human malaria[J]. PLoS Pathog, 2016, 12(8):e1005773.
doi: 10.1371/journal.ppat.1005773 |
[15] |
Becker A, Schlöder P, Steele JE, et al. The regulation of trehalose metabolism in insects[J]. Experientia, 1996, 52(5):433-439.
pmid: 8706810 |
[16] |
Wang M, An Y, Gao L, et al. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH[J]. Cell Rep, 2021, 35(3):108992.
doi: 10.1016/j.celrep.2021.108992 |
[17] |
Liu K, Dong Y, Huang Y, et al. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection[J]. Proc Natl Acad Sci USA, 2013, 110(43):17504-17509.
doi: 10.1073/pnas.1316709110 |
[18] |
Surachetpong W, Pakpour N, Cheung KW, et al. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum[J]. Antioxid Redox Signal, 2011, 14(6):943-955.
doi: 10.1089/ars.2010.3401 |
[19] |
Pakpour N, Corby-Harris V, Green GP, et al. Ingested human insulin inhibits the mosquito NF-κB-dependent immune response to Plasmodium falciparum[J]. Infect Immun, 2012, 80(6):2141-2149.
doi: 10.1128/IAI.00024-12 pmid: 22473605 |
[20] |
Pietri JE, Pakpour N, Napoli E, et al. Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism[J]. Biochem J, 2016, 473(20):3487-3503.
pmid: 27496548 |
[21] |
Nyasembe VO, Teal PEA, Sawa P, et al. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake[J]. Curr Biol, 2014, 24(2):217-221.
doi: 10.1016/j.cub.2013.12.022 pmid: 24412210 |
[22] |
Reynolds JA, Poelchau MF, Rahman Z, et al. Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus[J]. J Insect Physiol, 2012, 58(7):966-973.
doi: 10.1016/j.jinsphys.2012.04.013 pmid: 22579567 |
[23] |
Zhou G, Miesfeld RL. Energy metabolism during diapause in Culex pipiens mosquitoes[J]. J Insect Physiol, 2009, 55(1):40-46.
doi: 10.1016/j.jinsphys.2008.10.002 |
[24] |
van Handel E. Fuel metabolism of the mosquito (Culex quinquefasciatus) embryo[J]. J Insect Physiol, 1993, 39(10):831-833.
doi: 10.1016/0022-1910(93)90115-8 |
[25] |
Chotiwan N, Andre BG, Sanchez-Vargas I, et al. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes[J]. PLoS Pathog, 2018, 14(2):e1006853.
doi: 10.1371/journal.ppat.1006853 |
[26] |
Atella GC, Bittencourt-Cunha PR, Nunes RD, et al. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite[J]. Acta Trop, 2009, 109(2):159-162.
doi: 10.1016/j.actatropica.2008.10.004 |
[27] |
Werling K, Shaw WR, Itoe MA, et al. Steroid hormone function controls non-competitive Plasmodium development in Anopheles[J]. Cell, 2019, 177(2): 315-325. e14.
doi: 10.1016/j.cell.2019.02.036 |
[28] | Costa G, Eldering M, Lindquist RL, et al. Mosquito lipids regulate Plasmodium sporogony and infectivity to the mammalian host[J/OL]. bioRxiv, 2017. https://www.biorxiv.org/content/10. 1101/149443v1. |
[29] |
Cheon HM, Shin SW, Bian G, et al. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti[J]. J Biol Chem, 2006, 281(13):8426-8435.
doi: 10.1074/jbc.M510957200 |
[30] |
Gupta L, Noh JY, Jo YH, et al. Apolipophorin-Ⅲ mediates antiplasmodial epithelial responses in Anopheles gambiae (G3) mosquitoes[J]. PLoS One, 2010, 5(11):e15410.
doi: 10.1371/journal.pone.0015410 |
[31] |
Hansen IA, Attardo GM, Park JH, et al. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny[J]. Proc Natl Acad Sci USA, 2004, 101(29):10626-10631.
doi: 10.1073/pnas.0403460101 |
[32] |
Hansen IA, Attardo GM, Roy SG, et al. Target of rapamycin-dependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito[J]. J Biol Chem, 2005, 280(21):20565-20572.
pmid: 15788394 |
[33] | Sherman IW. Amino acid metabolism and protein synjournal in malarial parasites[J]. Bull World Health Organ, 1977, 55(2/3):265-276. |
[34] |
Payne SH, Loomis WF. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences[J]. Eukaryot Cell, 2006, 5(2):272-276.
doi: 10.1128/EC.5.2.272-276.2006 |
[35] |
Liu J, Istvan ES, Gluzman IY, et al. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems[J]. Proc Natl Acad Sci USA, 2006, 103(23):8840-8845.
doi: 10.1073/pnas.0601876103 |
[36] |
Arai M, Billker O, Morris HR, et al. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito[J]. Mol Biochem Parasitol, 2001, 116(1):17-24.
doi: 10.1016/S0166-6851(01)00299-7 |
[37] |
Lampe L, Jentzsch M, Kierszniowska S, et al. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development[J]. Nat Commun, 2019, 10(1):5634.
doi: 10.1038/s41467-019-13627-y pmid: 31822677 |
[38] |
Fuchs S, Behrends V, Bundy JG, et al. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito[J]. PLoS One, 2014, 9(1):e84865.
doi: 10.1371/journal.pone.0084865 |
[39] |
Oliveira JH, Gonçalves RL, Oliveira GA, et al. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection[J]. Insect Biochem Mol Biol, 2011, 41(6):349-355.
doi: 10.1016/j.ibmb.2011.02.001 |
[1] | 郭帅, 何彪, 高源利, 范永铃, 朱锋, 丁艳, 刘太平, 徐文岳. 鼠疟原虫感染大鼠和小鼠的种特异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 539-545. |
[2] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[3] | 梁柯嘉, 刘聪, 李彦霖, 李小鸽, 刘彦, 李贞魁. 疟原虫有性阶段转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 619-624. |
[4] | 王之谦, 王敬文, 宋秀梅. 斯氏按蚊肽聚糖识别蛋白S2调节共生菌稳态的功能分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 397-403. |
[5] | 丁红芸, 董莹, 徐艳春, 邓艳, 刘言, 吴静, 陈梦妮, 张苍林. 云南省输入性间日疟原虫多药抗性蛋白1基因突变多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 404-411. |
[6] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[7] | 孙军. 疟原虫色素形成的生物学意义[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 209-212. |
[8] | 师伟芳, 田珍灶, 周敬祝, 黄学平, 周雪梅, 吴国艳, 李琼, 廖启浪, 王丹. 2018—2020年贵州省中华按蚊抗药性调查研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 108-111. |
[9] | 贺志权, 胡亚博, 王丹, 张红卫, 刘颖, 杨成运, 钱丹, 纪鹏慧, 蒋甜甜, 鲁德领. 河南省部分地区中华按蚊对杀虫剂抗药性的监测[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 117-120. |
[10] | 李美, 肖宁, 夏志贵. 基于无性期18S rDNA特异性引物检测5种疟原虫qPCR的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 36-43. |
[11] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 河北省疟疾消除及消除后媒介种群和密度监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 806-809. |
[12] | 石天琪, 陈军虎. 间日疟原虫入侵网织红细胞相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 396-401. |
[13] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
[14] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[15] | 江莉, 张耀光, 刘红霞, 王真瑜, 朱民, 吴寰宇. 疟疾蚊媒监测多重PCR方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 159-167. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 572
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||