中国寄生虫学与寄生虫病杂志 ›› 2020, Vol. 38 ›› Issue (6): 771-776.doi: 10.12140/j.issn.1000-7423.2020.06.016
收稿日期:
2020-04-20
出版日期:
2020-12-30
发布日期:
2021-01-12
通讯作者:
于志军
作者简介:
裴庭苇(1996-),女,硕士研究生,从事蜱类microRNA研究。E-mail: 基金资助:
PEI Ting-wei(), YU Zhi-jun*(
), LIU Jing-ze
Received:
2020-04-20
Online:
2020-12-30
Published:
2021-01-12
Contact:
YU Zhi-jun
Supported by:
摘要:
微小核糖核酸(miRNA)是生物体内一类非编码小RNA分子,参与调控发育、应激、细胞分化、细胞凋亡等多种生理和细胞过程。蜱类作为专性吸血的外寄生动物,是多种病原体的传播媒介,有关其miRNA的研究主要集中于生长发育调控以及蜱与病原体相互作用过程中miRNA的功能调控等方面。本研究针对近年来蜱类miRNA的鉴定、作用及功能调控研究进行综述,以期为后续制定蜱及蜱媒疾病的防控对策提供理论基础。
中图分类号:
裴庭苇, 于志军, 刘敬泽. 蜱类miRNA研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 771-776.
PEI Ting-wei, YU Zhi-jun, LIU Jing-ze. Research progress on microRNAs of ticks[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2020, 38(6): 771-776.
表1
蜱类已知miRNA及其功能
物种 | miRNA | 靶基因 | 生物学功能 |
---|---|---|---|
长角血蜱 Haemaphysalis longicornis | miR-278[ | 未知 | 注射拮抗剂后饱血率下降,死亡率上升 |
miR-275[ | Vg-2 | 注射拮抗剂后卵巢发育受损,产卵量下降 | |
miR-184[ | Vg | 注射拮抗剂后饱血体重下降,产卵量下降,产卵周期变长 | |
miR-375[ | 未知 | 注射拮抗剂后产卵量下降,部分卵干燥、孵化率下降 | |
亚洲璃眼蜱Hyalomma asiaticum | miR-10[ | 未知 | 在吸血初期表达量上调,随吸血时间延长表达量逐渐下调,调控蜱类吸血过程 |
miR-451[ | MIF | miR-451上调负调控MIF表达 | |
Let-7[ | ECR | 注射Let-7类似物使其过表达时,蜱类蜕皮时间延长 | |
镰形扇头蜱 Rhipicephalus haemaphysaloides | miR-303[ | 未知 | 可靶向调控免疫通路相关基因 |
miR-9[ | 未知 | 在LPS激活的抗炎调节中发挥重要作用 | |
肩突硬蜱Ixodes scapularis | miR-79[ | Robo2 | 嗜吞噬细胞无形体通过靶向Robo2途径上调miR-79,减少保护性促炎症反应 |
[1] | Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010,11(9):597-610. |
[2] | McQuiston JH, Childs JE, Chamberland ME, et al. Transmission of tick-borne agents of disease by blood transfusion: a review of known and potential risks in the United States[J]. Transfusion, 2000,40(3):274-284. |
[3] | Jongejan F, Uilenberg G. The global importance of ticks[J]. Parasitology, 2004,129(S1):S3-S14. |
[4] | Yao QM, Zhou SF, Zhang Y, et al. Research progress on the correlations of tick-borne diseases with meteorological factors and their prevention measures in China[J]. Chin J Parasitol Parasit Dis, 2020,38(1):123-127. (in Chinese) |
( 姚清媚, 周素芳, 张仪, 等. 我国蜱媒传染病与气象因素的相关性及其防治措施的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(1):123-127.) | |
[5] | Wang FF, Zhou JL. Progress on microRNAs of ticks[J]. Prog Vet Med, 2015,36(4):83-86. (in Chinese) |
( 王方方, 周金林. 蜱MicroRNA研究进展[J]. 动物医学进展, 2015,36(4):83-86.) | |
[6] | Hackenberg M, Langenberger D, Schwarz A, et al. In-silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology[J]. RNA, 2017,23(8):1259-1269. |
[7] | Artigas-Jerónimo S, Alberdi P, Villar Rayo M, et al. Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway[J]. Sci Rep, 2019,9:9073. |
[8] | Gregory RI, Yan K, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs[J]. Nature, 2004,432(7014):235-240. |
[9] |
Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5[J]. Nucleic Acids Res, 2004,32(16):4776-4785.
doi: 10.1093/nar/gkh824 pmid: 15356295 |
[10] |
Wei J, Ouyang Y, Li X, et al. Early growth response gene 1, a TRBP binding protein, is involved in miRNA activity of miR-125a-3p in human cells[J]. Cell Signal, 2015,27(6):1120-1128.
doi: 10.1016/j.cellsig.2015.02.016 pmid: 25725290 |
[11] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
pmid: 14744438 |
[12] |
Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease[J]. Front Immunol, 2017,8:1182.
doi: 10.3389/fimmu.2017.01182 pmid: 28993774 |
[13] | Liu K, Huang HB, Yang JL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018,36(4):405-408. (in Chinese) |
( 刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018,36(4):405-408.) | |
[14] |
Ro S, Park C, Young D, et al. Tissue-dependent paired expression of miRNAs[J]. Nucleic Acids Res, 2007,35(17):5944-5953.
doi: 10.1093/nar/gkm641 pmid: 17726050 |
[15] |
Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA[J]. Development, 2005,132(21):4645-4652.
doi: 10.1242/dev.02070 pmid: 16224044 |
[16] |
Ghildiyal M, Xu J, Seitz H, et al. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway [J]. RNA, 2010,16(1):43-56.
pmid: 19917635 |
[17] |
Yang JS, Smibert P, Westholm JO, et al. Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila[J]. Nucleic Acids Res, 2014,42(3):1987-2002.
doi: 10.1093/nar/gkt1038 pmid: 24220090 |
[18] | Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002,110(4):513-520. |
[19] |
Stark A, Brennecke J, Bushati N, et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution[J]. Cell, 2005,123(6):1133-1146.
doi: 10.1016/j.cell.2005.11.023 pmid: 16337999 |
[20] | Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame[J]. RNA, 2010,16(12):2493-2502. |
[21] | Feng SY, Shao CC, Zhu XQ, et al. Research progress and application future of microRNA-36[J]. Chin J Parasitol Parasit Dis, 2015,33(1):68-71. (in Chinese) |
( 冯胜勇, 邵长春, 朱兴全, 等. 蠕虫特有的微小RNA-36研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(1):68-71.) | |
[22] |
Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing[J]. Cell, 2008,132(1):9-14.
doi: 10.1016/j.cell.2007.12.024 pmid: 18191211 |
[23] |
Legeai F, Rizk G, Walsh T, et al. Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum[J]. BMC Genomics, 2010,11:281.
doi: 10.1186/1471-2164-11-281 pmid: 20444247 |
[24] |
Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease[J]. Dev Cell, 2006,11(4):441-450.
pmid: 17011485 |
[25] |
Lema C, Cunningham MJ. MicroRNAs and their implications in toxicological research[J]. Toxicol Lett, 2010,198(2):100-105.
doi: 10.1016/j.toxlet.2010.06.019 pmid: 20599482 |
[26] |
Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis[J]. J Biochem, 2010,148(4):381-392.
pmid: 20833630 |
[27] |
Nairz K, Rottig C, Rintelen F, et al. Overgrowth caused by misexpression of a microRNA with dispensable wild-type function[J]. Dev Biol, 2006,291(2):314-324.
doi: 10.1016/j.ydbio.2005.11.047 pmid: 16443211 |
[28] |
Karres JS, Hilgers V, Carrera I, et al. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila[J]. Cell, 2007,131(1):136-145.
pmid: 17923093 |
[29] |
Bejarano F, Smibert P, Lai EC, et al. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only[J]. Dev Biol, 2010,338(1):63-73.
doi: 10.1016/j.ydbio.2009.11.025 pmid: 19944676 |
[30] |
Jayachandran B, Hussain M, Asgari S. An insect trypsin-like serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding[J]. Insect Biochem Mol Biol, 2013,43(4):398-406.
doi: 10.1016/j.ibmb.2012.10.004 pmid: 23108205 |
[31] |
Barrero RA, Keeble-Gagnère G, Zhang B, et al. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus[J]. BMC Genomics, 2011,12:328.
doi: 10.1186/1471-2164-12-328 pmid: 21699734 |
[32] | Fu SQ, Fan NH, Wang HJ, et al. Analysis of miRNA expression in Echinococcus granulosus protoscoleces isolated from sheep liver and lung[J]. Chin J Parasitol Parasit Dis, 2019,37(2):137-143. (in Chinese) |
( 付世强, 樊海宁, 王海久, 等. 绵羊肝脏、肺脏细粒棘球蚴原头节miRNA表达特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):137-143.) | |
[33] | Xu C, Wang FF, Gong HY, et al. Expression of three miRNAs from Haemaphysalis longicornis in the different developmental stages and organs[J]. Chin Vet Sci, 2017,47(8):1017-1021. (in Chinese) |
( 徐畅, 王方方, 龚海燕, 等. 长角血蜱三种miRNAs在不同发育阶段和器官中的表达分析[J]. 中国兽医科学, 2017,47(8):1017-1021.) | |
[34] |
Shao CC, Xu MJ, Chen YZ, et al. Comparative profiling of microRNAs in male and female Rhipicephalus sanguineus[J]. Appl Biochem Biotechnol, 2015,176(7):1928-1936.
doi: 10.1007/s12010-015-1688-x pmid: 26054615 |
[35] |
Luo J, Liu GY, Chen Z, et al. Identification and characterization of microRNAs by deep-sequencing in Hyalomma anatolicum anatolicum (Acari:Ixodidae) ticks[J]. Gene, 2015,564(2):125-133.
doi: 10.1016/j.gene.2015.01.019 pmid: 25592818 |
[36] |
Zhou J, Zhou Y, Cao J, et al. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding[J]. Exp Appl Acarol, 2013,59(3):339-349.
doi: 10.1007/s10493-012-9604-3 pmid: 22918721 |
[37] |
Wang F, Gong H, Zhang H, et al. Lipopolysaccharide-induced differential expression of miRNAs in male and female Rhipicephalus haemaphysaloides ticks[J]. PLoS One, 2015,10:e0139241.
doi: 10.1371/journal.pone.0139241 pmid: 26430879 |
[38] |
Fullaondo A, Lee SY. Identification of putative miRNA involved in Drosophila melanogaster immune response[J]. Dev Comp Immunol, 2012,36(2):267-273.
doi: 10.1016/j.dci.2011.03.034 pmid: 21641929 |
[39] |
Liu GD, Zhang H, Wang L, et al. Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells[J]. Int J Ophthalmol, 2013,6(3):280-285.
doi: 10.3980/j.issn.2222-3959.2013.03.05 pmid: 23826519 |
[40] | Luo J, Ren Q, Chen Z, et al. Comparative analysis of microRNA profiles between wild and cultured Haemaphysalis longicornis (Acari:Ixodidae) ticks[J]. Parasite, 2019,26:18. |
[41] | Yuan XS, Luo J, Tian ZC, et al. Analysis of the relative expression of microRNA-10 in different developmental stages and various tissues of Hyalomma asiaticum[J]. Sci Agr Sinica, 2014,47(4):806-814. (in Chinese) |
( 袁小松, 罗金, 田占成, 等. 亚洲璃眼蜱不同发育阶段及其组织中microRNA-10表达分析[J]. 中国农业科学, 2014,47(4):806-814.) | |
[42] | Luo J, Yuan XS, Hao JW, et al. Dynamic analysis of expression level of miR-451 and MIF gene in different developmental stages of adult Hyalomma asiaticum[J]. Sci Agr Sinica, 2015,48(21):4366-4373. (in Chinese) |
( 罗金, 袁小松, 郝佳伟, 等. 亚洲璃眼蜱成蜱不同发育期miR-451与MIF表达谱的动态分析[J]. 中国农业科学, 2015,48(21):4366-4373.) | |
[43] |
Hao J, Luo J, Chen Z, et al. MicroRNA-275 and its target Vitellogenin-2 are crucial in ovary development and blood digestion of Haemaphysalis longicornis[J]. Parasit Vectors, 2017,10(1):253.
pmid: 28532427 |
[44] |
Malik MI, Nawaz M, Wang Y, et al. Localized expression and inhibition effect of miR-184 on blood digestion and oviposition in Haemaphysalis longicornis (Acari: Ixodidae)[J]. Parasit Vectors, 2019,12(1):500.
pmid: 31653232 |
[45] |
Malik MI, Nawaz M, Hassan IA, et al. A microRNA profile of saliva and role of miR-375 in Haemaphysalis longicornis (Ixodida:Ixodidae)[J]. Parasit Vectors, 2019,12(1):68.
doi: 10.1186/s13071-019-3318-x pmid: 30709412 |
[46] |
Wu F, Luo J, Chen Z, et al. MicroRNA let-7 regulates the expression of ecdysteroid receptor (ECR) in Hyalomma asiaticum (Acari:Ixodidae) ticks[J]. Parasit Vectors, 2019,12(1):235.
doi: 10.1186/s13071-019-3488-6 pmid: 31092286 |
[47] |
Keck J, Gupta R, Christenson LK, et al. MicroRNA mediated regulation of immunity against gram-negative bacteria[J]. Int Rev Immunol, 2017,36(5):287-299.
doi: 10.1080/08830185.2017.1347649 pmid: 28800263 |
[48] |
Jopling CL, Yi M K, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA[J]. Science, 2005,309(5740):1577-1581.
doi: 10.1126/science.1113329 pmid: 16141076 |
[49] |
Sanghvi VR, Steel LF. RNA silencing as a cellular defense against HIV-1 infection: progress and issues[J]. FASEB J, 2012,26(10):3937-3945.
doi: 10.1096/fj.12-210765 pmid: 22751007 |
[50] | Ren MD, Ning YY, Li M, et al. Differential expression of circulating microRNAs in patients with cystic echinococcosis and screening for specific diagnostic biomarkers for the disease[J]. Chin J Parasitol Parasit Dis, 2017,35(5):423-428. (in Chinese) |
( 任梦迪, 宁玉烨, 黎明, 等. 细粒棘球蚴病患者外周血微小RNA的差异表达分析及其特异性诊断标志物的筛选[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(5):423-428.) | |
[51] |
Hermance ME, Widen SG, Wood TG, et al. Ixodes scapularis salivary gland microRNAs are differentially expressed during Powassan virus transmission[J]. Sci Rep, 2019,9:13110.
doi: 10.1038/s41598-019-49572-5 pmid: 31511580 |
[1] | 纪鹏慧, 蒋甜甜, 贺志权, 王丹, 岳思宁, 李素华, 杨成运, 王昊, 张红卫, 周瑞敏. 河南省信阳地区家畜寄生蜱感染巴贝虫的分子流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 567-572. |
[2] | 费思伟, 赵翰卿, 尹静娴, 孙芷珊, 郭晓奎, KASSEGNE Kokouvi, 周晓农. 基于文献计量分析的蜱及蜱传疾病研究领域发展趋势[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 609-618. |
[3] | 刘岳青, 马林源, 陈开廷, 高金亮, 王鹏. 蜱源Kunitz型丝氨酸蛋白酶抑制分子的结构与功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 625-630. |
[4] | 刘雅芳, 陈彬, 芦新焱, 李光华, 杜春红, 姜丹丹, 杨兴. 云南微小扇头蜱线粒体基因组全序列测定与分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 677-681. |
[5] | 宋瑞其, 翟雪洁, 李才善, 葛婷, 甘露, 张梦圆, 樊新丽, 李永畅, 张杨, 巴音查汗. 亚洲璃眼蜱和小亚璃眼蜱新疆地理株各发育阶段生物学特性的比较分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 369-378. |
[6] | 旷策嫣, 周金林. 蜱的化学感觉系统与驱避剂的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 104-108. |
[7] | 何文文, 伍军, 呼尔查, 阿力木江, 史倩云, 诺明达来, 甘露, 郝蕴伟, 巴音查汗. 基于最大熵模型的新疆银盾革蜱和边缘革蜱生境适应性评价[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 68-75. |
[8] | 周淑姮, 曾志伟, 刘维俊, 王加熊, 徐国英, 肖方震. 闽东地区野生动物寄生蜱感染梨形虫状况的调查及基因型分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 76-83. |
[9] | 吕立红, 张金成, 胡永红. 蜱类保护性抗原研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 542-547. |
[10] | 乌兰图雅, 殷旭红, 崔云虹, 刘丹, 王亭富, 苗雨润, 阿木日汗, 曹民治, 赵志伟, 邢方超, 鲁建英, 高娃. 内蒙古中西部草原蜱媒病原体多样性及基因型分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 27-35. |
[11] | 姚清媚, 周素芳, 张仪, 夏尚, 薛靖波. 我国蜱媒传染病与气象因素的相关性及其防治措施的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1): 123-127. |
[12] | 陈泽1*, 温廷桓2. 世界蜱类名录2. 硬蜱亚科(螨亚纲∶蜱目∶硬蜱科[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(4): 12-371-381. |
[13] | 温廷桓1*,陈泽2. 世界蜱类名录1. 软蜱科与纳蜱科(螨亚纲∶蜱目)[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(1): 10-58-74. |
[14] | 于志军,杨小龙,陈洁,刘敬泽*. 蜱类越冬生理生态适应机制概述[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(5): 13-385-387,392. |
[15] | 刘琪1, 王伟琳2, 孟庆峰2, 徐展1, 崔洁1, 刘新欣1, 王伟利2 *. 森林革蜱半饱血雄蜱抑制消减杂交cDNA文库的构建及差异基因的分析[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(4): 6-274-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||