[1] | Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010,11(9):597-610. | [2] | McQuiston JH, Childs JE, Chamberland ME, et al. Transmission of tick-borne agents of disease by blood transfusion: a review of known and potential risks in the United States[J]. Transfusion, 2000,40(3):274-284. | [3] | Jongejan F, Uilenberg G. The global importance of ticks[J]. Parasitology, 2004,129(S1):S3-S14. | [4] | Yao QM, Zhou SF, Zhang Y, et al. Research progress on the correlations of tick-borne diseases with meteorological factors and their prevention measures in China[J]. Chin J Parasitol Parasit Dis, 2020,38(1):123-127. (in Chinese) | [4] | ( 姚清媚, 周素芳, 张仪, 等. 我国蜱媒传染病与气象因素的相关性及其防治措施的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(1):123-127.) | [5] | Wang FF, Zhou JL. Progress on microRNAs of ticks[J]. Prog Vet Med, 2015,36(4):83-86. (in Chinese) | [5] | ( 王方方, 周金林. 蜱MicroRNA研究进展[J]. 动物医学进展, 2015,36(4):83-86.) | [6] | Hackenberg M, Langenberger D, Schwarz A, et al. In-silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology[J]. RNA, 2017,23(8):1259-1269. | [7] | Artigas-Jerónimo S, Alberdi P, Villar Rayo M, et al. Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway[J]. Sci Rep, 2019,9:9073. | [8] | Gregory RI, Yan K, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs[J]. Nature, 2004,432(7014):235-240. | [9] | Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5[J]. Nucleic Acids Res, 2004,32(16):4776-4785. | [10] | Wei J, Ouyang Y, Li X, et al. Early growth response gene 1, a TRBP binding protein, is involved in miRNA activity of miR-125a-3p in human cells[J]. Cell Signal, 2015,27(6):1120-1128. | [11] | Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297. | [12] | Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease[J]. Front Immunol, 2017,8:1182. | [13] | Liu K, Huang HB, Yang JL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018,36(4):405-408. (in Chinese) | [13] | ( 刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018,36(4):405-408.) | [14] | Ro S, Park C, Young D, et al. Tissue-dependent paired expression of miRNAs[J]. Nucleic Acids Res, 2007,35(17):5944-5953. | [15] | Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA[J]. Development, 2005,132(21):4645-4652. | [16] | Ghildiyal M, Xu J, Seitz H, et al. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway [J]. RNA, 2010,16(1):43-56. | [17] | Yang JS, Smibert P, Westholm JO, et al. Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila[J]. Nucleic Acids Res, 2014,42(3):1987-2002. | [18] | Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J]. Cell, 2002,110(4):513-520. | [19] | Stark A, Brennecke J, Bushati N, et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution[J]. Cell, 2005,123(6):1133-1146. | [20] | Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame[J]. RNA, 2010,16(12):2493-2502. | [21] | Feng SY, Shao CC, Zhu XQ, et al. Research progress and application future of microRNA-36[J]. Chin J Parasitol Parasit Dis, 2015,33(1):68-71. (in Chinese) | [21] | ( 冯胜勇, 邵长春, 朱兴全, 等. 蠕虫特有的微小RNA-36研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(1):68-71.) | [22] | Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing[J]. Cell, 2008,132(1):9-14. | [23] | Legeai F, Rizk G, Walsh T, et al. Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum[J]. BMC Genomics, 2010,11:281. | [24] | Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease[J]. Dev Cell, 2006,11(4):441-450. | [25] | Lema C, Cunningham MJ. MicroRNAs and their implications in toxicological research[J]. Toxicol Lett, 2010,198(2):100-105. | [26] | Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis[J]. J Biochem, 2010,148(4):381-392. | [27] | Nairz K, Rottig C, Rintelen F, et al. Overgrowth caused by misexpression of a microRNA with dispensable wild-type function[J]. Dev Biol, 2006,291(2):314-324. | [28] | Karres JS, Hilgers V, Carrera I, et al. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila[J]. Cell, 2007,131(1):136-145. | [29] | Bejarano F, Smibert P, Lai EC, et al. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only[J]. Dev Biol, 2010,338(1):63-73. | [30] | Jayachandran B, Hussain M, Asgari S. An insect trypsin-like serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding[J]. Insect Biochem Mol Biol, 2013,43(4):398-406. | [31] | Barrero RA, Keeble-Gagnère G, Zhang B, et al. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus[J]. BMC Genomics, 2011,12:328. | [32] | Fu SQ, Fan NH, Wang HJ, et al. Analysis of miRNA expression in Echinococcus granulosus protoscoleces isolated from sheep liver and lung[J]. Chin J Parasitol Parasit Dis, 2019,37(2):137-143. (in Chinese) | [32] | ( 付世强, 樊海宁, 王海久, 等. 绵羊肝脏、肺脏细粒棘球蚴原头节miRNA表达特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):137-143.) | [33] | Xu C, Wang FF, Gong HY, et al. Expression of three miRNAs from Haemaphysalis longicornis in the different developmental stages and organs[J]. Chin Vet Sci, 2017,47(8):1017-1021. (in Chinese) | [33] | ( 徐畅, 王方方, 龚海燕, 等. 长角血蜱三种miRNAs在不同发育阶段和器官中的表达分析[J]. 中国兽医科学, 2017,47(8):1017-1021.) | [34] | Shao CC, Xu MJ, Chen YZ, et al. Comparative profiling of microRNAs in male and female Rhipicephalus sanguineus[J]. Appl Biochem Biotechnol, 2015,176(7):1928-1936. | [35] | Luo J, Liu GY, Chen Z, et al. Identification and characterization of microRNAs by deep-sequencing in Hyalomma anatolicum anatolicum (Acari:Ixodidae) ticks[J]. Gene, 2015,564(2):125-133. | [36] | Zhou J, Zhou Y, Cao J, et al. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding[J]. Exp Appl Acarol, 2013,59(3):339-349. | [37] | Wang F, Gong H, Zhang H, et al. Lipopolysaccharide-induced differential expression of miRNAs in male and female Rhipicephalus haemaphysaloides ticks[J]. PLoS One, 2015,10:e0139241. | [38] | Fullaondo A, Lee SY. Identification of putative miRNA involved in Drosophila melanogaster immune response[J]. Dev Comp Immunol, 2012,36(2):267-273. | [39] | Liu GD, Zhang H, Wang L, et al. Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells[J]. Int J Ophthalmol, 2013,6(3):280-285. | [40] | Luo J, Ren Q, Chen Z, et al. Comparative analysis of microRNA profiles between wild and cultured Haemaphysalis longicornis (Acari:Ixodidae) ticks[J]. Parasite, 2019,26:18. | [41] | Yuan XS, Luo J, Tian ZC, et al. Analysis of the relative expression of microRNA-10 in different developmental stages and various tissues of Hyalomma asiaticum[J]. Sci Agr Sinica, 2014,47(4):806-814. (in Chinese) | [41] | ( 袁小松, 罗金, 田占成, 等. 亚洲璃眼蜱不同发育阶段及其组织中microRNA-10表达分析[J]. 中国农业科学, 2014,47(4):806-814.) | [42] | Luo J, Yuan XS, Hao JW, et al. Dynamic analysis of expression level of miR-451 and MIF gene in different developmental stages of adult Hyalomma asiaticum[J]. Sci Agr Sinica, 2015,48(21):4366-4373. (in Chinese) | [42] | ( 罗金, 袁小松, 郝佳伟, 等. 亚洲璃眼蜱成蜱不同发育期miR-451与MIF表达谱的动态分析[J]. 中国农业科学, 2015,48(21):4366-4373.) | [43] | Hao J, Luo J, Chen Z, et al. MicroRNA-275 and its target Vitellogenin-2 are crucial in ovary development and blood digestion of Haemaphysalis longicornis[J]. Parasit Vectors, 2017,10(1):253. | [44] | Malik MI, Nawaz M, Wang Y, et al. Localized expression and inhibition effect of miR-184 on blood digestion and oviposition in Haemaphysalis longicornis (Acari: Ixodidae)[J]. Parasit Vectors, 2019,12(1):500. | [45] | Malik MI, Nawaz M, Hassan IA, et al. A microRNA profile of saliva and role of miR-375 in Haemaphysalis longicornis (Ixodida:Ixodidae)[J]. Parasit Vectors, 2019,12(1):68. | [46] | Wu F, Luo J, Chen Z, et al. MicroRNA let-7 regulates the expression of ecdysteroid receptor (ECR) in Hyalomma asiaticum (Acari:Ixodidae) ticks[J]. Parasit Vectors, 2019,12(1):235. | [47] | Keck J, Gupta R, Christenson LK, et al. MicroRNA mediated regulation of immunity against gram-negative bacteria[J]. Int Rev Immunol, 2017,36(5):287-299. | [48] | Jopling CL, Yi M K, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA[J]. Science, 2005,309(5740):1577-1581. | [49] | Sanghvi VR, Steel LF. RNA silencing as a cellular defense against HIV-1 infection: progress and issues[J]. FASEB J, 2012,26(10):3937-3945. | [50] | Ren MD, Ning YY, Li M, et al. Differential expression of circulating microRNAs in patients with cystic echinococcosis and screening for specific diagnostic biomarkers for the disease[J]. Chin J Parasitol Parasit Dis, 2017,35(5):423-428. (in Chinese) | [50] | ( 任梦迪, 宁玉烨, 黎明, 等. 细粒棘球蚴病患者外周血微小RNA的差异表达分析及其特异性诊断标志物的筛选[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(5):423-428.) | [51] | Hermance ME, Widen SG, Wood TG, et al. Ixodes scapularis salivary gland microRNAs are differentially expressed during Powassan virus transmission[J]. Sci Rep, 2019,9:13110. |
|