[1] | Backhed F.Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. | [2] | 刘婧, 陈丹, 庄桂芬, 等. 家蝇发育过程中肠道可培养共生细菌的分离与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(2): 120-124. | [3] | Abt MC, Pamer EG.Commensal bacteria mediated defenses against pathogens[J]. Curr Opin Immunol, 2014, 29: 16-22. | [4] | Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal Microbiota[J]. Science, 2011, 334(6053): 245-249. | [5] | Dennison NJ, Jupatanakul N, Dimopoulos G.The mosquito Microbiota influences vector competence for human pathogens[J]. Curr Opin Insect Sci, 2014, 3: 6-13. | [6] | Hay SI, Okiro EA, Gething PW, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007[J]. PLoS Med, 2010, 7(6): e1000290. | [7] | Murray NE, Quam MB, Wilder-Smith A.Epidemiology of dengue: past, present and future prospects[J]. Clin Epidemiol, 2013, 5: 299-309. | [8] | Gulland A.Death toll from malaria is double the WHO estimate, study finds[J]. BMJ, 2012, 344: e895. | [9] | 张丽, 丰俊, 张少森, 等. 2018年全国疟疾疫情特征及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(3): 241-247. | [10] | Cheng G, Liu Y, Wang PH, et al. Mosquito defense strategies against Viral infection[J]. Trends Parasitol, 2016, 32(3): 177-186. | [11] | Ramirez JL, Souza-Neto J, Torres Cosme R, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut Microbiota, innate immune system and dengue virus influences vector competence[J]. PLoS Negl Trop Dis, 2012, 6(3): e1561. | [12] | Belkaid Y, Hand TW.Role of the Microbiota in immunity and inflammation[J]. Cell, 2014, 157(1): 121-141. | [13] | Kuss SK, Best GT, Etheredge CA, et al. Intestinal Microbiota promote enteric virus replication and systemic pathogenesis[J]. Science, 2011, 334(6053): 249-252. | [14] | Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal Microbiota[J]. Science, 2011, 334(6053): 245-249. | [15] | Fang J.Ecology: A world without mosquitoes[J]. Nature, 2010, 466(7305): 432-434. | [16] | Ricci I, Damiani C, Capone A, et al. Mosquito/Microbiota interactions: from complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3): 278-284. | [17] | Terenius O, Lindh JM, Eriksson-Gonzales K, et al. Midgut bacterial dynamics in Aedes aegypti[J]. FEMS Microbiol Ecol, 2012, 80(3): 556-565. | [18] | 王晓明, 吴焜, 陈晓光, 等. 蚊虫共生微生物群多样性及功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 305-311. | [19] | Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut Microbiota for development[J]. Mol Ecol, 2014, 23(11): 2727-2739. | [20] | Wang Y, Gilbreath TM, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9): e24767. | [21] | Gimonneau G, Tchioffo MT, Abate L, et al. Composition of Anopheles coluzzii and Anopheles gambiae Microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28: 715-724. | [22] | Gusmão DS, Santos AV, Marini DC, et al. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera : Culicidae) (L.) and dynamics of bacterial colonization in the midgut[J]. Acta Trop, 2010, 115(3): 275-281. | [23] | Osei-Poku J, Mbogo CM, Palmer WJ, et al. Deep sequencing reveals extensive variation in the gut Microbiota of wild mosquitoes from Kenya[J]. Mol Ecol, 2012, 21(20): 5138-5150. | [24] | Zouache K, Raharimalala FN, Raquin V, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3): 377-389. | [25] | Boissière A, Tchioffo MT, Bachar D, et al. Midgut Microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5): e1002742. | [26] | Favia G, Ricci I, Damiani C, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector[J]. Proc Natl Acad Sci USA, 2007, 104(21): 9047-9051. | [27] | Mancini MV, Damiani C, Accoti A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing[J]. BMC Microbiol, 2018, 18(1): 126. | [28] | Apte-Deshpande AD, Paingankar MS, Gokhale MD, et al. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus[J]. Indian J Med Res, 2014, 139(5): 762-768. | [29] | Apte-Deshpande A, Paingankar M, Gokhale MD, et al. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus[J]. PLoS One, 2012, 7(7): e40401. | [30] | Wu P, Sun P, Nie KX, ,et al. A gut commensal Bacterium promotes mosquito permissiveness to Arboviruses[J]. Cell Host Microbe, 2019, 25(1): 101-112.e5. | [31] | Peng J, Zhong JR, Granados R.A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae[J]. J Insect Physiol, 1999, 45(2): 159-166. | [32] | Fang SL, Wang L, Guo W, et al. Bacillus thuringiensis Bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin[J]. Appl Environ Microbiol, 2009, 75(16): 5237-5243. | [33] | Marroquín-Cardona AG, Johnson NM, Phillips TD, et al. Mycotoxins in a changing global environment: a review[J]. Food Chem Toxicol, 2014, 69: 220-230. | [34] | Antonissen G, Martel A, Pasmans F, et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases[J]. Toxins (Basel), 2014, 6(2): 430-452. | [35] | Maketon M, Amnuaykanjanasin A, Kaysorngup A.A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand[J]. World J Microbiol Biotechnol, 2014, 30(2): 727-736. | [36] | Scholte EJ, Knols BG, Samson RA, et al. Entomopathogenic Fungi for mosquito control: a review[J]. J Insect Sci, 2004, 4: 19. | [37] | Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity[J]. Elife, 2017, 6: e28844. | [38] | Ramirez JL, Short SM, Bahia AC, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities[J]. PLoS Pathog, 2014, 10(10): e1004398. | [39] | Saraiva RG, Fang JR, Kang S, et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein[J]. PLoS Negl Trop Dis, 2018, 12(4): e0006443. | [40] | 郭秀霞, 王怀位. 蚊虫先天免疫分子机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(1): 52-57. | [41] | 郑文琪, 苏秀兰. 抗菌肽的抗疟原虫活性及作用机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 643-647. | [42] | Blandin S, Levashina EA.Mosquito immune responses against malaria parasites[J]. Curr Opin Immunol, 2004, 16(1): 16-20. | [43] | Dong YM, Morton JC Jr, Ramirez JL, et al. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti[J]. Insect Biochem Mol Biol, 2012, 42(2): 126-132. | [44] | Scholte EJ, Knols BG, Takken W.Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity[J]. J Invertebr Pathol, 2006, 91(1): 43-49. | [45] | Jaronski ST.Ecological factors in the inundative use of fungal entomopathogens[J]. Bio Control, 2010, 55(1): 159-185. | [46] | Zimmermann G.Review on safety of the entomopathogenic fungus Metarhizium anisopliae[J]. Biocontrol Sci Technol, 2007, 17(9): 879-920. | [47] | Garza-Hernández JA, Rodríguez-Pérez MA, Salazar MI, et al. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae[J]. PLoS Negl Trop Dis, 2013, 7(3): e2013. | [48] | Fang WG, Vega-Rodríguez J, Ghosh AK, et al. Development of transgenic Fungi that kill human malaria parasites in mosquitoes[J]. Science, 2011, 331(6020): 1074-1077. | [49] | Thomas MB, Read AF.Can fungal biopesticides control malaria?[J]. Nat Rev Microbiol, 2007, 5(5): 377-383. | [50] | Smith RC, Vega-Rodríguez J, Jacobs-Lorena M.The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. Mem Inst Oswaldo Cruz, 2014, 109(5): 644-661. | [51] | Cirimotich CM, Ramirez JL, Dimopoulos G.Native Microbiota shape insect vector competence for human pathogens[J]. Cell Host Microbe, 2011, 10(4): 307-310. | [52] | Ramirez JL, Dimopoulos G.The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes[J]. Dev Comp Immunol, 2010, 34(6): 625-629. | [53] | Frolet C, Thoma M, Blandin S, et al. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei[J]. Immunity, 2006, 25(4): 677-685. | [54] | Souza-Neto JA, Sim S, Dimopoulos G.An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17841-17846. | [55] | Xi ZY, Ramirez JL, Dimopoulos G.The Aedes aegypti toll pathway controls dengue virus infection[J]. PLoS Pathog, 2008, 4(7): e1000098. | [56] | Meister S, Kanzok SM, Zheng XL, et al. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2005, 102(32): 11420-11425. | [57] | Garver LS, Bahia AC, Das S, et al. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action[J]. PLoS Pathog, 2012, 8(6): e1002737. | [58] | Dostert C, Jouanguy E, Irving P, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila[J]. Nat Immunol, 2005, 6(9): 946-953. | [59] | Kakumani PK, Ponia SS, Rajgokul KS, et al. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor[J]. J Virol, 2013, 87(16): 8870-8883. | [60] | Wang SB, Ghosh AK, Bongio N, et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12734-12739. |
|