中国寄生虫学与寄生虫病杂志 ›› 2019, Vol. 37 ›› Issue (5): 603-608.doi: 10.12140/j.issn.1000-7423.2019.05.017
收稿日期:
2019-06-30
出版日期:
2019-10-30
发布日期:
2019-11-07
通讯作者:
程功
作者简介:
作者简介:蔡珍(1989-),女,博士,助理研究员,从事蚊媒传染病防治研究。E-mail:
基金资助:
Zhen CAI(), Xi YU, Gong CHENG*(
)
Received:
2019-06-30
Online:
2019-10-30
Published:
2019-11-07
Contact:
Gong CHENG
Supported by:
摘要:
蚊是一种吸血昆虫,在人群中通过吸血叮咬的方式感染并传播疟原虫、登革病毒、寨卡病毒等多种病原体,给全球公共卫生安全带来重大威胁。中肠组织是蚊虫抵抗病原体感染的第一道防线,蚊的中肠组织内栖息着大量的肠道微生物,当被感染病原体的血液进入到蚊的中肠组织后,某些肠道微生物通过分泌蛋白质、小分子等多种方式直接或间接影响病原体感染蚊中肠上皮层的过程,进而调控了病原体在蚊虫体内的复制传播。本综述总结了有关蚊肠道微生物调控蚊媒传染病传播的情况,阐述了不同种类的蚊肠道微生物影响病原体在蚊体内复制传播的机制。
中图分类号:
蔡珍, 余茜, 程功. 蚊肠道微生物调节蚊媒传染病传播的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(5): 603-608.
Zhen CAI, Xi YU, Gong CHENG. Progress towards mosquito microbiome on regulating the transmission of mosquito-borne diseases[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2019, 37(5): 603-608.
[1] | Backhed F.Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. |
[2] | 刘婧, 陈丹, 庄桂芬, 等. 家蝇发育过程中肠道可培养共生细菌的分离与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(2): 120-124. |
[3] | Abt MC, Pamer EG.Commensal bacteria mediated defenses against pathogens[J]. Curr Opin Immunol, 2014, 29: 16-22. |
[4] | Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal Microbiota[J]. Science, 2011, 334(6053): 245-249. |
[5] | Dennison NJ, Jupatanakul N, Dimopoulos G.The mosquito Microbiota influences vector competence for human pathogens[J]. Curr Opin Insect Sci, 2014, 3: 6-13. |
[6] | Hay SI, Okiro EA, Gething PW, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007[J]. PLoS Med, 2010, 7(6): e1000290. |
[7] | Murray NE, Quam MB, Wilder-Smith A.Epidemiology of dengue: past, present and future prospects[J]. Clin Epidemiol, 2013, 5: 299-309. |
[8] | Gulland A.Death toll from malaria is double the WHO estimate, study finds[J]. BMJ, 2012, 344: e895. |
[9] | 张丽, 丰俊, 张少森, 等. 2018年全国疟疾疫情特征及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(3): 241-247. |
[10] | Cheng G, Liu Y, Wang PH, et al. Mosquito defense strategies against Viral infection[J]. Trends Parasitol, 2016, 32(3): 177-186. |
[11] | Ramirez JL, Souza-Neto J, Torres Cosme R, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut Microbiota, innate immune system and dengue virus influences vector competence[J]. PLoS Negl Trop Dis, 2012, 6(3): e1561. |
[12] | Belkaid Y, Hand TW.Role of the Microbiota in immunity and inflammation[J]. Cell, 2014, 157(1): 121-141. |
[13] | Kuss SK, Best GT, Etheredge CA, et al. Intestinal Microbiota promote enteric virus replication and systemic pathogenesis[J]. Science, 2011, 334(6053): 249-252. |
[14] | Kane M, Case LK, Kopaskie K, et al. Successful transmission of a retrovirus depends on the commensal Microbiota[J]. Science, 2011, 334(6053): 245-249. |
[15] | Fang J.Ecology: A world without mosquitoes[J]. Nature, 2010, 466(7305): 432-434. |
[16] | Ricci I, Damiani C, Capone A, et al. Mosquito/Microbiota interactions: from complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3): 278-284. |
[17] | Terenius O, Lindh JM, Eriksson-Gonzales K, et al. Midgut bacterial dynamics in Aedes aegypti[J]. FEMS Microbiol Ecol, 2012, 80(3): 556-565. |
[18] | 王晓明, 吴焜, 陈晓光, 等. 蚊虫共生微生物群多样性及功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 305-311. |
[19] | Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut Microbiota for development[J]. Mol Ecol, 2014, 23(11): 2727-2739. |
[20] | Wang Y, Gilbreath TM, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9): e24767. |
[21] | Gimonneau G, Tchioffo MT, Abate L, et al. Composition of Anopheles coluzzii and Anopheles gambiae Microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28: 715-724. |
[22] | Gusmão DS, Santos AV, Marini DC, et al. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera : Culicidae) (L.) and dynamics of bacterial colonization in the midgut[J]. Acta Trop, 2010, 115(3): 275-281. |
[23] | Osei-Poku J, Mbogo CM, Palmer WJ, et al. Deep sequencing reveals extensive variation in the gut Microbiota of wild mosquitoes from Kenya[J]. Mol Ecol, 2012, 21(20): 5138-5150. |
[24] | Zouache K, Raharimalala FN, Raquin V, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3): 377-389. |
[25] | Boissière A, Tchioffo MT, Bachar D, et al. Midgut Microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5): e1002742. |
[26] | Favia G, Ricci I, Damiani C, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector[J]. Proc Natl Acad Sci USA, 2007, 104(21): 9047-9051. |
[27] | Mancini MV, Damiani C, Accoti A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing[J]. BMC Microbiol, 2018, 18(1): 126. |
[28] | Apte-Deshpande AD, Paingankar MS, Gokhale MD, et al. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus[J]. Indian J Med Res, 2014, 139(5): 762-768. |
[29] | Apte-Deshpande A, Paingankar M, Gokhale MD, et al. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus[J]. PLoS One, 2012, 7(7): e40401. |
[30] | Wu P, Sun P, Nie KX, ,et al. A gut commensal Bacterium promotes mosquito permissiveness to Arboviruses[J]. Cell Host Microbe, 2019, 25(1): 101-112.e5. |
[31] | Peng J, Zhong JR, Granados R.A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae[J]. J Insect Physiol, 1999, 45(2): 159-166. |
[32] | Fang SL, Wang L, Guo W, et al. Bacillus thuringiensis Bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin[J]. Appl Environ Microbiol, 2009, 75(16): 5237-5243. |
[33] | Marroquín-Cardona AG, Johnson NM, Phillips TD, et al. Mycotoxins in a changing global environment: a review[J]. Food Chem Toxicol, 2014, 69: 220-230. |
[34] | Antonissen G, Martel A, Pasmans F, et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases[J]. Toxins (Basel), 2014, 6(2): 430-452. |
[35] | Maketon M, Amnuaykanjanasin A, Kaysorngup A.A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand[J]. World J Microbiol Biotechnol, 2014, 30(2): 727-736. |
[36] | Scholte EJ, Knols BG, Samson RA, et al. Entomopathogenic Fungi for mosquito control: a review[J]. J Insect Sci, 2004, 4: 19. |
[37] | Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity[J]. Elife, 2017, 6: e28844. |
[38] | Ramirez JL, Short SM, Bahia AC, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities[J]. PLoS Pathog, 2014, 10(10): e1004398. |
[39] | Saraiva RG, Fang JR, Kang S, et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein[J]. PLoS Negl Trop Dis, 2018, 12(4): e0006443. |
[40] | 郭秀霞, 王怀位. 蚊虫先天免疫分子机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(1): 52-57. |
[41] | 郑文琪, 苏秀兰. 抗菌肽的抗疟原虫活性及作用机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 643-647. |
[42] | Blandin S, Levashina EA.Mosquito immune responses against malaria parasites[J]. Curr Opin Immunol, 2004, 16(1): 16-20. |
[43] | Dong YM, Morton JC Jr, Ramirez JL, et al. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti[J]. Insect Biochem Mol Biol, 2012, 42(2): 126-132. |
[44] | Scholte EJ, Knols BG, Takken W.Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity[J]. J Invertebr Pathol, 2006, 91(1): 43-49. |
[45] | Jaronski ST.Ecological factors in the inundative use of fungal entomopathogens[J]. Bio Control, 2010, 55(1): 159-185. |
[46] | Zimmermann G.Review on safety of the entomopathogenic fungus Metarhizium anisopliae[J]. Biocontrol Sci Technol, 2007, 17(9): 879-920. |
[47] | Garza-Hernández JA, Rodríguez-Pérez MA, Salazar MI, et al. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae[J]. PLoS Negl Trop Dis, 2013, 7(3): e2013. |
[48] | Fang WG, Vega-Rodríguez J, Ghosh AK, et al. Development of transgenic Fungi that kill human malaria parasites in mosquitoes[J]. Science, 2011, 331(6020): 1074-1077. |
[49] | Thomas MB, Read AF.Can fungal biopesticides control malaria?[J]. Nat Rev Microbiol, 2007, 5(5): 377-383. |
[50] | Smith RC, Vega-Rodríguez J, Jacobs-Lorena M.The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. Mem Inst Oswaldo Cruz, 2014, 109(5): 644-661. |
[51] | Cirimotich CM, Ramirez JL, Dimopoulos G.Native Microbiota shape insect vector competence for human pathogens[J]. Cell Host Microbe, 2011, 10(4): 307-310. |
[52] | Ramirez JL, Dimopoulos G.The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes[J]. Dev Comp Immunol, 2010, 34(6): 625-629. |
[53] | Frolet C, Thoma M, Blandin S, et al. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei[J]. Immunity, 2006, 25(4): 677-685. |
[54] | Souza-Neto JA, Sim S, Dimopoulos G.An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17841-17846. |
[55] | Xi ZY, Ramirez JL, Dimopoulos G.The Aedes aegypti toll pathway controls dengue virus infection[J]. PLoS Pathog, 2008, 4(7): e1000098. |
[56] | Meister S, Kanzok SM, Zheng XL, et al. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2005, 102(32): 11420-11425. |
[57] | Garver LS, Bahia AC, Das S, et al. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action[J]. PLoS Pathog, 2012, 8(6): e1002737. |
[58] | Dostert C, Jouanguy E, Irving P, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila[J]. Nat Immunol, 2005, 6(9): 946-953. |
[59] | Kakumani PK, Ponia SS, Rajgokul KS, et al. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor[J]. J Virol, 2013, 87(16): 8870-8883. |
[60] | Wang SB, Ghosh AK, Bongio N, et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12734-12739. |
[1] | 郭苏影, 祝红庆, 曹淳力, 邓王平, 鲍子平, 贾铁武, 李银龙, 吕超, 秦志强, 张利娟, 冯婷, 杨帆, 吕山, 许静, 李石柱. 2020年长江中下游地区洪涝灾害后血吸虫病传播风险评估[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 753-758. |
[2] | 吴家利, 李博, 刘斯, 涂祖武, 唐丽, 涂珍, 周晓蓉, 孙凌聪, 肖瑛, 朱红. 基于人群抗体水平的湖北省血吸虫病传播风险分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 578-584. |
[3] | 朱慧慧, 诸廷俊, 陈颖丹, 邓卓晖, 许静, 周长海, 钱门宝, 秦志强, 黄继磊, 吕超, 张米禛, 李石柱. 新型冠状病毒肺炎疫情对重点寄生虫病防控工作的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 365-369. |
[4] | 公衍峰, 胡小康, 周正斌, 朱慧慧, 郝瑜婉, 王强, 张仪, 李石柱. 基于生态位模型预测我国黄土高原延伸带内脏利什曼病的传播风险[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 218-225. |
[5] | 沈玉娟, 姜岩岩, 曹建平. 我国介水传播肠道原虫病流行现状与防控策略[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 8-12. |
[6] | 吴宇迪, 刘飞, 杨帆, 曹雅明. 传播阻断疫苗候选抗原Pb280在伯氏疟原虫中的表达及功能研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 710-717. |
[7] | 裴庭苇, 于志军, 刘敬泽. 蜱类miRNA研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 771-776. |
[8] | 胡小康, 夏尚, 郭云海, 郝瑜婉, 薛靖波, 吕山, 许静, 李石柱. 生态位模型及其在寄生虫病传播风险研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(2): 238-244. |
[9] | 胡小康, 郝瑜婉, 夏尚, 郭云海, 薛靖波, 张云, 王丽芳, 董毅, 许静, 李石柱. 基于生态位模型的云南省血吸虫病传播风险探测研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1): 80-87. |
[10] | 李银龙, 余章科, 李佑兴, 艾丁华, 章萍, 李召军, 林丹丹, 许静. 血吸虫病传播控制后江西省鄱阳湖区血清抗体阳性者管理模式的探讨[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 665-669. |
[11] | 李宜锋, 周理源, 余章科, 许静, 陈锐, 章萍, 刘亦文, 林丹丹, 李石柱. 江西省协作创新示范区实现血吸虫病传播阻断目标的SWOT分析[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 694-698. |
[12] | 郑文琪, 王俊瑞, 王华, 刘飞, 罗恩杰, 曹雅明, 韩艳秋. 伯氏疟原虫推测分泌动合子蛋白7截短片段传播阻断功能的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(5): 520-525. |
[13] | 毛强, 裴福全, 岑咏珍, 刘梦然, 张豪, 邓卓晖. 广东省1例输血性恶性疟病例的实验室检测和溯源调查[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 529-533. |
[14] | 孟晓军, 宗胜华, 高东林, 张轩, 钱燕华, 陆兵. 基于模糊综合评价法的血吸虫病传播阻断后风险评估[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 626-628. |
[15] | 陈田木, 张少森, 周水森. 疟疾再传播风险评估方法与指标参数的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5): 489-494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||