[1] |
Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty[J]. Trends Parasitol, 2006,22(12):552-557.
doi: 10.1016/j.pt.2006.09.004
|
[2] |
Oryan A, Akbari M. Worldwide risk factors in leishmaniasis[J]. Asian Pac J Trop Med, 2016,9(10):925-932.
doi: S1995-7645(16)30157-2
pmid: 27794384
|
[3] |
Lun ZR, Wu MS, Chen YF, et al. Visceral leishmaniasis in China: an endemic disease under control[J]. Clin Microbiol Rev, 2015,28(4):987-1004.
doi: 10.1128/CMR.00080-14
|
[4] |
Wang JY, Cui G, Chen HT, et al. Current epidemiological profile and features of visceral leishmaniasis in People’s republic of China[J]. Parasit Vectors, 2012,5:31.
doi: 10.1186/1756-3305-5-31
|
[5] |
Zheng CJ, Xue CZ, Wu WP, et al. Epidemiological characteristics of Kala-azar disease in China, during 2005—2015[J]. Chin J Epidemiol, 2017,38(4):431-434. (in Chinese)
doi: 10.3760/cma.j.issn.0254-6450.2017.04.004
pmid: 28468057
|
|
( 郑灿军, 薛垂召, 伍卫平, 等. 我国2005—2015年黑热病报告病例流行特征分析[J]. 中华流行病学杂志, 2017,38(4):431-434.)
pmid: 28468057
|
[6] |
Chen HM, Chen HY, Gao JP, et al. Ecological niches of sandfly (Diptera ∶ Psychodidae) in the extension region of Loess Plateau, China: an endemic focus of visceral leishmaniasis[J]. Chin J Vector Biol Control, 2019,30(6):597-602. (in Chinese)
|
|
( 陈翰明, 陈辉莹, 高景鹏, 等. 我国黄土高原延伸地带利什曼病流行区的传播媒介小生境调查[J]. 中国媒介生物学及控制杂志, 2019,30(6):597-602.)
|
[7] |
Zhou ZB, Li YY, Zhang Y, et al. Prevalence of visceral leishmaniasis in China in 2019[J]. Chin J Parasitol Parasit Dis, 2020,38(5):602-607. (in Chinese)
|
|
( 周正斌, 李元元, 张仪, 等. 2019年我国内脏利什曼病疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(5):602-607.)
|
[8] |
Zhou ZB, Li YY, Zhang Y, et al. Prevalence of visceral leishmaniasis in China in 2018[J]. Chin J Parasitol Parasit Dis, 2020,38(2):175-180, 187. (in Chinese)
|
|
( 周正斌, 李元元, 张仪, 等. 2018年全国内脏利什曼病疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(2):175-180, 187.)
|
[9] |
Falcão de Oliveira E, Galati EAB, Oliveira AGD, et al . Ecological niche modelling and predicted geographic distribution of Lutzomyia cruzi, vector of Leishmania infantum in South America[J]. PLoS Negl Trop Dis, 2018,12(7):e0006684.
doi: 10.1371/journal.pntd.0006684
|
[10] |
Chaves LF, Calzada JE, Valderrama A, et al. Cutaneous leishmaniasis and sand fly fluctuations are associated with el niño in panamá[J]. PLoS Negl Trop Dis, 2014,8(10):e3210.
doi: 10.1371/journal.pntd.0003210
|
[11] |
Ready PD. Leishmaniasis emergence and climate change[J]. Rev Sci Tech, 2008,27(2):399-412.
doi: 10.20506/rst.issue.27.2.38
|
[12] |
Lin XL, Xiao H, Tian HY. Application of niche model in risk forecast of infectious diseases[J]. Chin J Prev Med, 2013,47(4):294-296. (in Chinese)
|
|
( 林晓玲, 肖洪, 田怀玉. 生态位模型在传染病风险预测中的应用[J]. 中华预防医学杂志, 2013,47(4):294-296.)
|
[13] |
de Santana Martins Rodgers M, Bavia ME, Fonseca EOL, et al. Ecological niche models for sand fly species and predicted distribution of Lutzomyia longipalpis (Diptera ∶ Psychodidae) and visceral leishmaniasis in Bahia state, Brazil[J]. Environ Monit Assess, 2019,191(Suppl 2):331.
doi: 10.1007/s10661-019-7431-2
pmid: 31254126
|
[14] |
Abdullah AYM, Dewan A, Shogib MRI, et al. Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of Bangladesh: modeling the ecological niche[J]. Trop Med Heal, 2017,45(1):1-15.
|
[15] |
Artun O. Ecological niche modeling for the prediction of cutaneous leishmaniasis epidemiology in current and projected future in Adana, Turkey[J]. J Vector Borne Dis, 2019,56(2):127-133.
doi: 10.4103/0972-9062.263726
|
[16] |
Thuiller W, Lafourcade B, Engler R, et al. BIOMOD: a platform for ensemble forecasting of species distributions[J]. Ecography, 2009,32(3):369-373.
doi: 10.1111/eco.2009.32.issue-3
|
[17] |
Leta S, Fetene E, Mulatu T, et al. Modeling the global distribution of Culicoides imicola: an ensemble approach[J]. Sci Rep, 2019,9(1):14187.
doi: 10.1038/s41598-019-50765-1
|
[18] |
Heikkinen RK, Marmion M, Luoto M. Does the interpolation accuracy of species distribution models come at the expense of transferability?[J]. Ecography, 2012,35(3):276-288.
doi: 10.1111/ecog.2012.35.issue-3
|
[19] |
Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. J Appl Ecol, 2006,43(6):1223-1232.
doi: 10.1111/jpe.2006.43.issue-6
|
[20] |
Mędrzycki P, Jarzyna I, Obidziński A, et al. Simple yet effective: historical proximity variables improve the species distribution models for invasive giant hogweed (Heracleum mantegazzianum s.l.) in Poland[J]. PLoS One, 2017,12(9):e0184677.
doi: 10.1371/journal.pone.0184677
|
[21] |
Hu XK, Hao YW, Xia S, et al. Detection of schistosomiasis transmission risks in Yunnan Province based on ecological niche modeling[J]. Chin J Parasitol Parasit Dis, 2020,38(1):80-86, 94. (in Chinese)
|
|
( 胡小康, 郝瑜婉, 夏尚, 等. 基于生态位模型的云南省血吸虫病传播风险探测研究[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(1):80-86, 94.)
|
[22] |
Yang SL, Song LJ, Ma GQ, et al. Investigation of 4 cases of kala-azar in Anyang City, Henan Province[J]. Chin J Endem, 2018,37(12):1027. (in Chinese)
|
|
( 杨书丽, 宋录军, 马改青, 等. 河南省安阳市4例黑热病病例调查[J]. 中华地方病学杂志, 2018,37(12):1027.)
|
[23] |
Elith J, Graham C, Anderson R, et al. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 2006,29(2):129-151.
doi: 10.1111/j.2006.0906-7590.04596.x
|
[24] |
Qiao HJ, Soberón J, Peterson AT. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation[J]. Methods Ecol Evol, 2015,6(10):1126-1136.
doi: 10.1111/mee3.2015.6.issue-10
|
[25] |
Townsend J. Mapping disease transmission risk: enriching models using biogeography and ecology[J]. Emerg Infect Dis, 2015,21(8):1489.
doi: 10.3201/eid2108.150665
|
[26] |
Dai PF, Tian XD, Zhao JY, et al. The effectiveness comparative study of three different devices in trapping sandflies in different areas of Shanxi Province, China[J]. Chin J Vector Biol Control, 2020,31(2):212-214, 218. (in Chinese)
|
|
( 代培芳, 田晓东, 赵俊英, 等. 3种不同器械在山西省不同地区诱捕白蛉效果比较研究[J]. 中国媒介生物学及控制杂志, 2020,31(2):212-214, 218.)
|
[27] |
Yang JK, Li F, Liu LL, et al. Effect of sand-fly control on interruption of leishmaniasis transmission[J]. Chin Trop Med, 2014,14(8):932-934. (in Chinese)
|
|
( 杨俊克, 李凡, 刘林林, 等. 防止白蛉叮吸以降低犬源型黑热病传播风险的效果评价[J]. 中国热带医学, 2014,14(8):932-934.)
|
[28] |
Li YF, Zhong WX, Zhao GH, et al. Prevalence and control of kala-azar in China[J]. J Pathog Biol, 2011,6(8):629-631. (in Chinese)
|
|
( 李玉凤, 仲维霞, 赵桂华, 等. 我国黑热病的流行概况和防治现状[J]. 中国病原生物学杂志, 2011,6(8):629-631.)
|
[29] |
Han S, Wu WP, Xue CZ, et al. Endemic status of visceral leishmaniasis in China from 2004 to 2016[J]. Chin J Parasitol Parasit Dis, 2019,37(2):189-195. (in Chinese)
|
|
( 韩帅, 伍卫平, 薛垂召, 等. 2004—2016年中国内脏利什曼病疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):189-195.)
|
[30] |
Cross ER, Hyams KC. The potential effect of global warming on the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia[J]. Environ Health Perspect, 1996,104(7):724-727.
doi: 10.1289/ehp.96104724
|
[31] |
Zhang P, Shen ZY, Zhang YP, et al. Research progress of clinical epidemiology, prevention and treatment on visceral leishmaniasis[J]. Med J NDFNC, 2019,40(11):703-708. (in Chinese)
|
|
( 张鹏, 沈兆媛, 张亚萍, 等. 我国内脏利什曼病临床流行病学特征与防治研究现状[J]. 西北国防医学杂志, 2019,40(11):703-708.)
|
[32] |
Zheng CJ, Wang LY, Xu X, et al. Visceral leishmaniasis in China during 2004—2007[J]. Chin J Parasitol Parasit Dis, 2009,27(4):344-346. (in Chinese)
|
|
( 郑灿军, 王立英, 许翔, 等. 2004—2007年我国内脏利什曼病流行情况[J]. 中国寄生虫学与寄生虫病杂志, 2009,27(4):344-346.)
|
[33] |
Li H, Zhao YN, Zhao LQ, et al. A case of recurrent Kala-azar in Shanxi Province[J]. Chin J Endem, 2019,38(3):247-248. (in Chinese)
|
|
( 李红, 赵亚楠, 赵丽琴, 等. 山西省1例再发内脏利什曼病患者诊治体会[J]. 中华地方病学杂志, 2019,38(3):247-248.)
|
[34] |
Zheng CJ, Fu JY, Li Z, et al. Spatiotemporal variation and hot spot detection of visceral leishmaniasis disease in Kashi prefecture, China[J]. Int J Environ Res Public Health, 2018,15(12):E2784.
|