[1] | World Health Organization.World Malaria Report 2017[R]. Geneva: WHO, 2017. | [2] | World Health Organization.Global technical strategy for malaria 2016-2030[R]. Geneva: WHO, 2015. | [3] | 雷正龙, 王立英. 全国重点寄生虫病防治形势与主要任务[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(1): 1-5. | [4] | 张丽, 丰俊, 夏志贵. 2013年全国疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(6): 407-413. | [5] | 丰俊, 张丽, 周水森, 等. 全国2005-2015年疟疾疫情分析[J]. 中国热带医学, 2017, 17(4): 325-334. | [6] | 张丽, 丰俊, 张少森, 等. 2017 年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 201-209. | [7] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624. | [8] | Sinha S, Medhi B, Sehgal R.Challenges of drug-resistant malaria[J]. Parasite, 2014, 21: 61. | [9] | Draper SJ, Sack BK, King CR, et al. Malaria vaccines: recent advances and new horizons[J]. Cell Host Microbe, 2018, 24(1): 43-56. | [10] | Long CA, Zavala F.Malaria vaccines and human immune responses[J]. Curr Opin Microbiol, 2016, 32: 96-102. | [11] | Boman HG.Antibacterial peptides: key components needed in immunity[J]. Cell, 1991, 65(2): 205-207. | [12] | Hultmark D, Steiner H, Rasmuson T, et al. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. Eur J Biochem, 1980, 106(1): 7-16. | [13] | Steiner H, Hultmark D, Engström A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature, 1981, 292(5820): 246-248. | [14] | Hancock RE.Peptide antibiotics[J]. Lancet, 1997, 349(9049): 418-422. | [15] | Jenssen H, Hamill P, Hancock RE.Peptide antimicrobial agents[J]. Clin Microbiol Rev, 2006, 19(3): 491-511. | [16] | Karstad R, Isaksen G, Wynendaele E, et al. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration[J]. J Med Chem, 2012, 55(14): 6294-6305. | [17] | Gwadz RW, Kaslow D, Lee JY, et al. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes[J]. Infect Immun, 1989, 57(9): 2628-2633. | [18] | Vale N, Aguiar L, Gomes P.Antimicrobial peptides: a new class of antimalarial drugs[J]. Front Pharmacol, 2014, 5: 275. | [19] | Zairi A, Tangy F, Bouassida K, et al. Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review[J]. J Biomed Biotechnol, 2009, 2009: 452567. | [20] | Ghosh JK, Shaool D, Guillaud P, et al. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis[J]. J Biol Chem, 1997, 272(50): 31609-31616. | [21] | Krugliak M, Feder R, Zolotarev VY, et al. Antimalarial activities of dermaseptin S4 derivatives[J]. Antimicrob Agents Chemother, 2000, 44(9): 2442-2451. | [22] | Efron L, Dagan A, Gaidukov L, et al. Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture[J]. J Biol Chem, 2002, 277(27): 24067-24072. | [23] | Jaynes JM, Burton CA, Barr SB, et al. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi[J]. FASEB J, 1988, 2(13): 2878-2883. | [24] | Cabezas-Cruz A, Tonk M, Bouchut A, et al. Antiplasmodial activity is an ancient and conserved feature of tick defensins[J]. Front Microbiol, 2016, 7: 1682. | [25] | Couto J, Tonk M, Ferrolho J, et al. Antiplasmodial activity of tick defensins in a mouse model of malaria[J]. Ticks Tick Borne Dis, 2018, 9(4): 844-849. | [26] | Carter V, Hurd H.Choosing anti-Plasmodium molecules for genetically modifying mosquitoes: focus on peptides[J]. Trends Parasitol, 2010, 26(12): 582-590. | [27] | Sinden RE, Dawes EJ, Alavi Y, et al. Progression of Plasmodium berghei through Anopheles stephensi is density-dependent[J]. PLoS Pathog, 2007, 3(12): e195. | [28] | Tian C, Gao B, Rodriguez Mdel C, et al. Gene expression, antiparasitic activity, and functional evolution of the drosomycin family[J]. Mol Immunol, 2008, 45(15): 3909-3916. | [29] | Carter V, Underhill A, Baber I, et al. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium[J]. PLoS Pathog, 2013, 9(11): e1003790. | [30] | Fredenhagen A, Fendrich G, Märki F, et al. Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin[J]. J Antibiot, 1990, 43(11): 1403-1412. | [31] | Asthana N, Yadav SP, Ghosh JK.Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity[J]. J Biol Chem, 2004, 279(53): 55042-55050. | [32] | Arrighi RB, Ebikeme C, Jiang Y, et al. Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei[J]. Antimicrob Agents Chemother, 2008, 52(9): 3414-3417. | [33] | Arrighi RB, Nakamura C, Miyake J, et al. Design and activity of antimicrobial peptides against sporogonic-stage parasites causing murine malarias[J]. Antimicrob Agents Chemother, 2002, 46(7): 2104-2110. | [34] | Konno K, Hisada M, Fontana R, et al. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis[J]. Biochim Biophys Acta, 2001, 1550(1): 70-80. | [35] | Longland CL, Mezna M, Michelangeli F.The mechanism of inhibition of the Ca2+-ATPase by mastoparan. Mastoparan abolishes cooperative Ca2+ binding[J]. J Biol Chem, 1999, 274(21): 14799-14805. | [36] | Vizioli J, Bulet P, Hoffmann JA, et al. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2001, 98(22): 12630-12635. | [37] | Rodriguez MC, Zamudio F, Torres JA, et al. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei[J]. Exp Parasitol, 1995, 80(4): 596-604. | [38] | Conde R, Zamudio FZ, Rodríguez MH, et al. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom[J]. FEBS Lett, 2000, 471(2-3): 165-168. | [39] | Biswaro LS, da Costa Sousa MG, Rezende TMB, et al. Antimicrobial peptides and nanotechnology, recent advances and challenges[J]. Front Microbiol, 2018, 9: 855. | [40] | Hsiao LL, Howard RJ, Aikawa M, et al. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum[J]. Biochem J, 1991, 274(Pt 1): 121-132. | [41] | Gelhaus C, Jacobs T, Andrä J, et al. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum[J]. Antimicrob Agents Chemother, 2008, 52(5): 1713-1720. | [42] | Park Y, Hahm KS.Antimicrobial peptides(AMPs): peptide structure and mode of action[J]. J Biochem Mol Biol, 2005, 38(5): 507-516. | [43] | Harms JM, Wilson DN, Schluenzen F, et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin[J]. Mol Cell, 2008, 30(1): 26-38. | [44] | Azevedo R, Markovic M, Machado M, et al. Bioluminescence method for in vitro screening of Plasmodium transmission-blocking compounds[J]. Antimicrob Agents Chemother, 2017, 61(6): e02699-16. | [45] | Aminake MN, Schoof S, Sologub L, et al. Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast[J]. Antimicrob Agents Chemother, 2011, 55(4): 1338-1348. |
|