中国寄生虫学与寄生虫病杂志 ›› 2018, Vol. 36 ›› Issue (6): 648-654.
收稿日期:
2018-07-02
出版日期:
2018-12-30
发布日期:
2019-01-08
通讯作者:
沈玉娟
基金资助:
Xiao-fan ZHANG, Wen-ci GONG, Yu-juan SHEN*()
Received:
2018-07-02
Online:
2018-12-30
Published:
2019-01-08
Contact:
Yu-juan SHEN
Supported by:
摘要:
胞外囊泡是由多种细胞分泌的囊状小体,内含大量的蛋白质、脂类和核酸等生物活性物质,广泛参与细胞间物质交换和信息传递。已有研究表明,寄生虫可利用胞外囊泡进行细胞间通讯,并通过胞外囊泡将一系列生物活性分子转移到宿主细胞,调节宿主免疫系统。本文对胞外囊泡在寄生蠕虫中的研究进展作一综述,为其在寄生虫领域的研究提供新的思路。
中图分类号:
张小凡, 巩文词, 沈玉娟. 胞外囊泡在寄生蠕虫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 648-654.
Xiao-fan ZHANG, Wen-ci GONG, Yu-juan SHEN. Research progress on extracellular vesicles of helminthes[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36(6): 648-654.
[1] | 郭静,徐桂英,黄昊,等. 外泌体在肿瘤诊疗中的研究进展[J]. 中国比较医学杂志, 2017, 27(2): 86-92. |
[2] | Wolf P.The nature and significance of platelet products in human plasma[J]. Br J Haematol, 1967, 13(3): 269-288. |
[3] | Raposo G, Stoorvogel W.Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. |
[4] | Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4: 27066. |
[5] | Marcilla A, Martin-Jaular L, Trelis M, et al. Extracellular vesicles in parasitic diseases[J]. J Extracell Vesicles, 2014, 3: 25040. |
[6] | 伊星昊, 李猛,付玉荣. 外泌体及其在结核病中作用的研究进展[J]. 中国病原生物学杂志, 2018, 13(2): 213-216. |
[7] | Hessvik NP, Llorente A.Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208. |
[8] | Kalra H, Drummen GP, Mathivanan S.Focus on extracellular vesicles: introducing the next small big thing[J]. Int J Mol Sci, 2016, 17(2): 170. |
[9] | Simons M, Raposo G.Exosomes-vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21(4): 575-581. |
[10] | Hugel B, Martínez MC, Kunzelmann C, et al. Membrane microparticles: two sides of the coin[J]. Physiology (Bethesda), 2005, 20: 22-27. |
[11] | Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization[J]. Biochem J, 2004, 380(Pt 1): 161-171. |
[12] | Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867): 1244-1247. |
[13] | Wubbolts R, Leckie RS, Veenhuizen PT, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. potential implications for their function and multivesicular body formation[J]. J Biol Chem, 2003, 278(13): 10963-10972. |
[14] | Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles[J]. J Immunol, 2001, 166(12): 7309-7318. |
[15] | Choi DS, Kim DK, Kim YK, et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes[J]. Proteomics, 2013, 13(10/11): 1554-1571. |
[16] | Kastelowitz N, Yin H.Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes[J]. Chembiochem, 2014, 15(7): 923-928. |
[17] | 田艾灵, 张芙恺, 陈丹,等. 寄生蠕虫免疫逃避机制的研究进展[J]. 中国人兽共患病学报, 2018, 34(3): 276-281. |
[18] | McSorley HJ, Maizels RM. Helminth infections and host immune regulation[J]. Clin Microbiol Rev, 2012, 25(4): 585-608. |
[19] | Hotez PJ, Brindley PJ, Bethony JM, et al. Helminth infections: the great neglected tropical diseases[J]. J Clin Invest, 2008, 118(4): 1311-1321. |
[20] | Toledo R, Bernal MD, Marcilla A.Proteomics of foodborne trematodes[J]. J Proteomics, 2011, 74(9): 1485-1503. |
[21] | Hewitson JP, Ivens AC, Harcus Y, et al. Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity[J]. PLoS Pathog, 2013, 9(8): e1003492. |
[22] | Marcilla A, Trelis M, Cortés A, et al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells[J]. PLoS One, 2012, 7(9): e45974. |
[23] | Sotillo J, Valero ML, Sánchez Del Pino MM, et al. Excretory/secretory proteome of the adult stage of Echinostoma caproni[J]. Parasitol Res, 2010, 107(3): 691-697. |
[24] | Bernal D, Carpena I, Espert AM, et al. Identification of proteins in excretory/secretory extracts of Echinostoma friedi (Trematoda) from chronic and acute infections[J]. Proteomics, 2006, 6(9): 2835-2843. |
[25] | Silverman JM, Clos J, de′Oliveira CC, et al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages[J]. J Cell Sci, 2010, 123(Pt 6): 842-852. |
[26] | Liégeois S, Benedetto A, Garnier JM, et al. The V0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in Caenorhabditis elegans[J]. J Cell Biol, 2006, 173(6): 949-961. |
[27] | Wang X, Chen W, Hu F, et al. Clonorchis sinensis enolase: identification and biochemical characterization of a glycolytic enzyme from excretory/secretory products[J]. Mol Biochem Parasitol, 2011, 177(2): 135-142. |
[28] | de la Torre-Escudero E, Manzano-Román R, Pérez-Sánchez R, et al. Cloning and characterization of a plasminogen-binding surface-associated enolase from Schistosoma bovis[J]. Vet Parasitol, 2010, 173(1/2): 76-84. |
[29] | Wilson RA, Wright JM, de Castro-Borges W, et al. Exploring the Fasciola hepatica tegument proteome[J]. Int J Parasitol, 2011, 41(13/14): 1347-1359. |
[30] | Cameron TC, Cooke I, Faou P, et al. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep[J]. Int J Parasitol, 2017, 47(9): 555-567. |
[31] | Cwiklinski K, de la Torre-Escudero E, Trelis M, et al. The extracellular vesicles of the helminth pathogen[J]. Mol Cell Proteomics, 2015, 14(12): 3258-3273. |
[32] | Gracias DT, Katsikis PD.MicroRNAs: key components of immune regulation[J]. Adv Exp Med Biol, 2011, 780: 15-26. |
[33] | Jia S, Zhai H, Zhao M.MicroRNAs regulate immune system via multiple targets[J]. Discov Med, 2014, 18(100): 237-247. |
[34] | Sayed D, Abdellatif M.MicroRNAs in development and disease[J]. Physiol Rev, 2011, 91(3): 827-887. |
[35] | Fromm B, Ovchinnikov V, Hϕye E, et al. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode[J]. Parasite Immunol, 2017, 39(2): e12399. |
[36] | Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucl Acids Res, 2014, 42(Database issue): D68-D73. |
[37] | Chafin CB, Regna NL, Caudell DL, et al. MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro[J]. Cell Mol Immunol, 2014, 11(1): 79-83. |
[38] | Buck AH, Coakley G, Simbari F, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2014, 5: 5488. |
[39] | Fromm B, Trelis M, Hackenberg M, et al. The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles[J]. Int J Parasitol, 2015, 45(11): 697-702. |
[40] | Chaiyadet S, Sotillo J, Smout M, et al. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype[J]. J Infect Dis, 2015, 212(10): 1636-1645. |
[41] | Zhu L, Liu J, Dao J, et al. Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions[J]. Sci Rep, 2016, 6: 25885. |
[42] | Zhu S, Wang S, Lin Y, et al. Release of extracellular vesicles containing small RNAs from the eggs of Schistosoma japonicum[J]. Parasit Vectors, 2016, 9(1): 574. |
[43] | Wang L, Li Z, Shen J, et al. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune-activity of macrophage[J]. Parasitol Res, 2015, 114(5): 1865-1873. |
[44] | Samoil V, Dagenais M, Ganapathy V, et al. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni[J]. Sci Rep, 2018, 8(1): 3286. |
[45] | Sotillo J, Pearson M, Potriquet J, et al. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates[J]. Int J Parasitol, 2016, 46(1): 1-5. |
[46] | Pinheiro CS, Ribeiro AP, Cardoso FC, et al. A multivalent chimeric vaccine composed of Schistosoma mansoni SmTSP-2 and Sm29 was able to induce protection against infection in mice.[J]. Parasite Immunol, 2014, 36(7): 303-312. |
[47] | Toledo R, Fried B.Echinostomes as experimental models for interactions between adult parasites and vertebrate hosts[J]. Trends Parasitol, 2005, 21(6): 251-254. |
[48] | Medzhitov R.Recognition of microorganisms and activation of the immune response[J]. Nature, 2007, 449(7164): 819-826. |
[49] | Robinson MW, Hutchinson AT, Donnelly S, et al. Worm secretory molecules are causing alarm[J]. Trends Parasitol, 2010, 26(8): 371-372. |
[50] | Giuliani A, Pirri G, Rinaldi AC.Antimicrobial peptides: the LPS connection[J]. Methods Mol Biol, 2010, 618: 137-154. |
[51] | Trelis M, Galiano A, Bolado A, et al. Subcutaneous injection of exosomes reduces symptom severity and mortality induced by Echinostoma caproni infection in BALB/c mice[J]. Int J Parasitol, 2016, 46(12): 799-808. |
[52] | Bernal D, Trelis M, Montaner S, et al. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs[J]. J Proteomics, 2014, 105: 232-241. |
[53] | Rojo-Vázquez FA, Meana A, Valcárcel F, et al. Update on trematode infections in sheep[J]. Vet Parasitol, 2012, 189(1): 15-38. |
[54] | Baietti MF, Zhang Z, Mortier E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes[J]. Nat Cell Biol, 2012, 14(7): 677-685. |
[55] | Buck AH, Blaxter M.Functional diversification of argonautes in nematodes: an expanding universe[J]. Biochem Soc Trans, 2013, 41(4): 881-886. |
[56] | Smith KA, Maizels RM.IL-6 controls susceptibility to helminth infection by impeding Th2 responsiveness and altering the Treg phenotype in vivo[J]. Eur J Immunol, 2014, 44(1): 150-161. |
[57] | Hammer M, Mages J, Dietrich H, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock[J]. J Exp Med, 2006, 203(1): 15-20. |
[58] | Nelin LD, Wang X, Zhao Q, et al. MKP-1 switches arginine metabolism from nitric oxide synthase to arginase following endotoxin challenge[J]. Am J Physiol, Cell Physiol, 2007, 293(2): C632-C640. |
[59] | Anthony RM, Urban JF, Alem F, et al. Memory Th2 cells induce alternatively activated macrophages to mediate protection against nematode parasites[J]. Nat Med, 2006, 12(8): 955-960. |
[60] | Wang T, Van Steendam K, Dhaenens M, et al. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases[J]. PLoS Negl Trop Dis, 2013, 7(10): e2467. |
[61] | Zamanian M, Fraser LM, Agbedanu PN, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite brugia malayi[J]. PLoS Negl Trop Dis, 2015, 9(9): e0004069. |
[62] | Banerjee S, Xie N, Cui H, et al. MicroRNA let-7c regulates macrophage polarization[J]. J Immunol, 2013, 190(12): 6542-6549. |
[63] | Schulte LN, Eulalio A, Mollenkopf HJ, et al. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family[J]. EMBO J, 2011, 30(10): 1977-1989. |
[64] | Han C, Shen JK, Hornicek FJ, et al. Regulation of microRNA-1 (miR-1) expression in human cancer[J]. Biochim Biophys Acta, 2017, 1860(2): 227-232. |
[65] | Eichenberger RM, Talukder MH, Field MA, et al. Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host-parasite communication[J]. J Extracell Vesicles, 2018, 7(1): 1428004. |
[66] | Mulcahy LA, Pink RC, Carter DR.Routes and mechanisms of extracellular vesicle uptake[J]. J Extracell Vesicles, 2014, 3. |
[67] | Tian T, Zhu YL, Hu FH, et al. Dynamics of exosome internalization and trafficking[J]. J Cell Physiol, 2013, 228(7): 1487-1495. |
[68] | Escrevente C, Keller S, Altevogt P, et al. Interaction and uptake of exosomes by ovarian cancer cells[J]. BMC Cancer, 2011, 11: 108. |
[69] | Hansen EP, Kringel H, Williams AR, et al. Secretion of RNA-containing extracellular vesicles by the porcine whipworm, Trichuris suis[J]. J Parasitol, 2015, 101(3): 336-340. |
[70] | Hoy AM, Lundie RJ, Ivens A, et al. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection[J]. PLoS Negl Trop Dis, 2014, 8(2): e2701. |
[71] | Summers RW, Elliott DE, Urban JF Jr, et al. Trichuris suis therapy in Crohn’s disease[J]. Gut, 2005, 54(1): 87-90. |
[72] | 唐春莲, 申志琴, 雷家慧,等. 蠕虫感染在预防与治疗炎症性肠病中的作用及机制[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6): 571-576. |
[73] | Santos GB, Monteiro KM, da Silva ED, et al. Excretory/secretory products in the Echinococcus granulosus metacestode: is the intermediate host complacent with infection caused by the larval form of the parasite[J]. Int J Parasitol, 2016, 46(13/14): 843-856. |
[74] | Díaz Á, Fernández C, Pittini Á, et al. The laminated layer: recent advances and insights into Echinococcus biology and evolution[J]. Exp Parasitol, 2015, 158: 23-30. |
[75] | Watson K, Koumangoye R, Thompson P, et al. Fetuin-A triggers the secretion of a novel set of exosomes in detached tumor cells that mediate their adhesion and spreading[J]. FEBS Lett, 2012, 586(19): 3458-3463. |
[76] | Nangami G, Koumangoye R, Shawn GJ, et al. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells[J]. Exp Cell Res, 2014, 328(2): 388-400. |
[77] | Siles-Lucas M, Sánchez-Ovejero C, González-Sánchez M, et al. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts[J]. Vet Parasitol, 2017, 236: 22-33. |
[78] | Coakley G, Maizels RM, Buck AH.Exosomes and other extracellular vesicles: the new communicators in parasite infections[J]. Trends Parasitol, 2015, 31(10): 477-489. |
[79] | Zheng Y, Guo X, Su M, et al. Regulatory effects of Echinococcus multilocularis extracellular vesicles on RAW264.7 macrophages[J]. Vet Parasitol, 2017, 235: 29-36. |
[80] | Zheng Y.Strategies of Echinococcus species responses to immune attacks: implications for therapeutic tool development[J]. Int Immunopharmacol, 2013, 17(3): 495-501. |
[81] | Cocucci E, Meldolesi J.Ectosomes and exosomes: shedding the confusion between extracellular vesicles[J]. Trends Cell Biol, 2015, 25(6): 364-372. |
[82] | Liu F, Cui SJ, Hu W, et al. Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum[J]. Mol Cell Proteomics, 2009, 8(6): 1236-1251. |
[83] | Morphew RM, Wright HA, LaCourse EJ, et al. Comparative proteomics of excretory-secretory proteins released by the liver fluke Fasciola hepatica in sheep host bile and during in vitro culture ex host[J]. Mol Cell Proteomics, 2007, 6(6): 963-972. |
[84] | Zheng Y, Guo X, He W, et al. Effects of Echinococcus multilocularis miR-71 mimics on murine macrophage RAW264.7 cells[J]. Int Immunopharmacol, 2016, 34: 259-262. |
[85] | Galán-Puchades MT, Yang Y, Marcilla A, et al. First ultrastructural data on the human tapeworm Taenia asiatica eggs by scanning and transmission electron microscopy (SEM, TEM)[J]. Parasitol Res, 2016, 115(9): 3649-3655. |
[86] | Siles-Lucas M, Morchon R, Simon F, et al. Exosome-transported microRNAs of helminth origin: new tools for allergic and autoimmune diseases therapy[J]. Parasite Immunol, 2015, 37(4): 208-214. |
[1] | 刘毅, 蔡玉春, 陈家旭, 陈韶红, 俞英昉. 旋毛虫新生幼虫细胞外囊泡的分离鉴定及组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 225-233. |
[2] | 汪业彬, 沈续航, 邓国强, 胡赛敏, 汪飞, 张玲玲, 沈继龙. 黄山市乡村中老年人群无症状钩虫感染对肠道菌群和代谢的作用[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 17-26. |
[3] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[4] | 黎嫦, 杜新月, 严敏, 王兆军. 中性粒细胞胞外诱捕网在寄生虫感染中的作用和机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 219-222. |
[5] | 李腾, 沈玉娟, 崔丽君, 刘华, 胡媛, 姜岩岩, 曹建平. 长链非编码RNA NEAT1通过调控IL-8参与肠上皮细胞抗隐孢子虫反应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 487-492. |
[6] | 左清秋, 郑佳鑫, 王刚, 王旭, 王小明, 王正寰. 青藏高原棘球蚴病的传播生态学[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 524-535. |
[7] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[8] | 何威, 周必英. 感染蠕虫后宿主T细胞免疫应答相关信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 223-227. |
[9] | 罗鋆, 陈及清, 江典伟, 周培聪, 蔡茂荣, 程由注. 福建省尤溪县东南部并殖吸虫中间宿主种群及其感染情况[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 646-651. |
[10] | 付梅花, 王旭, 韩帅, 喻文杰, 杨毅, 高明军, 刘剑峰, 官亚宜, 王莹, 李春阳, 施丹丹, 伍卫平. 四川省色达县野外棘球绦虫终末宿主粪便污染情况及特征[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 687-695. |
[11] | 胡玥, 吕志跃. 代谢组学在医学蠕虫研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 703-709. |
[12] | 徐枫雁, 杨勇, 高欣, 刘晓雷, 王洋, 刘明远, 张媛媛, 白雪. 寄生虫胞外囊泡蛋白质组学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 526-532. |
[13] | 侯永恒, 吕芳丽. 弓形虫感染与宿主细胞自噬的相互作用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 537-542. |
[14] | 陈玉莹, 王晓婷, 戴洋, 曹俊. 蠕虫及其来源分子干预炎症性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 380-385. |
[15] | 史春丽, 杨慧, 潘雯, 张馨, 朱晓庭, 赵嘉庆. 细粒棘球蚴原头节分泌的细胞外囊泡中人源蛋白质组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 695-701. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||