中国寄生虫学与寄生虫病杂志 ›› 2017, Vol. 35 ›› Issue (3): 305-312.
收稿日期:
2017-02-21
出版日期:
2017-06-30
发布日期:
2017-09-07
通讯作者:
吴焜
基金资助:
Xiao-ming WANG, Kun WU*(), Xiao-guang CHEN, Gui-yun YAN
Received:
2017-02-21
Online:
2017-06-30
Published:
2017-09-07
Contact:
Kun WU
Supported by:
摘要:
蚊虫共生微生物群对蚊虫的生长、发育、繁殖及媒介效能具有很大的作用及影响。本文从蚊虫微生物群的组成、多样性和影响因素,以及微生物群对蚊虫的影响及常见功能等方面进行综述。
中图分类号:
王晓明, 吴焜, 陈晓光, 闫桂云. 蚊虫共生微生物群多样性及功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(3): 305-312.
Xiao-ming WANG, Kun WU, Xiao-guang CHEN, Gui-yun YAN. Research advances on diversity and function of mosquito-bacteria symbiosis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2017, 35(3): 305-312.
1 | 杨义婷, 郭建洋, 龙楚云, 等. 昆虫内共生菌及其功能研究进展[J]. 昆虫学报, 2014, 57(1): 111-122. |
2 | Akman L, Yamashita A, Watanabe H, et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia[J]. Nat Genet, 2002, 32(3): 402-407. |
3 | Rio RVM, Symula RE, Wang J, et al. Insight into the transmission biology and species-specific functional capabili-ties of tsetse(Diptera ∶ Glossinidae) obligate symbiont wiggle-sworthia[J]. mBio, 2012, 3(1): e00240-e00211. |
4 | Ricci I, Damiani C, Capone A, et al. Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3): 278-284. |
5 | Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites[J]. PLoS Pathog, 2009, 5(5): e1000423. |
6 | Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens[J]. Curr Opin Insect Sci, 2014, 3: 6-13. |
7 | Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut microbiota for development[J]. Mol Ecol, 2014, 23(11): 2727-2739. |
8 | Kim CH, Lampman RL, Muturi EJ. Bacterial communities and midgut microbiota associated with mosquito populations from waste tires in east-central illinois[J]. J Med Entomol, 2015, 52(1): 63-75. |
9 | Minard G, Mavingui P, Moro C. Diversity and function of bacterial microbiota in the mosquito holobiont[J]. Parasit Vectors, 2013, 6(1): 146. |
[10] | Gonzalez-Ceron L, Santillan F, Rodriguez MH, et al. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development[J]. J Med Entomol, 2003, 40(3): 371-374. |
[11] | Joyce JD, Nogueira JR, Bales AA, et al. Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera ∶ Culicidae)[J]. J Med Entomol, 2011, 48(2): 389-394. |
[12] | Hoffmann AA, Montgomery BL, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission[J]. Nature, 2011, 476(7361): 454-457. |
[13] | Zhang D, Zheng X, Xi Z, et al. Combining the sterile insect technique with the incompatible insect technique: Ⅰ-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus[J]. PLoS One, 2015, 10(4): e0121126. |
[14] | Gendrin M, Christophides GK.The Anopheles mosquito microbiota and their impact on pathogen transmission[J]. Intech, 2013: 525-548. |
[15] | Rejmánková E, Higashi R, Grieco J, et al. Volatile substances from larval habitats mediate species-specific oviposition in Anopheles mosquitoes[J]. J Med Entomol, 2005, 42(2): 95-103. |
[16] | Wotton RS, Chaloner DT, Yardley CA, et al. Growth of Anopheles mosquito larvae on dietary microbiota in aquatic surface microlayers[J]. Med Vet Entomol, 1997, 11(1): 65-70. |
[17] | Gimonneau G, Tchioffo MT, Abate L, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28: 715-724. |
[18] | Wang Y, Qian PY.Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies[J]. PLoS One, 2009, 4(10): e7401. |
[19] | Rossi P, Ricci I, Cappelli A, et al. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors[J]. Parasit Vectors, 2015, 8(1): 278. |
[20] | Favia G, Ricci I, Damiani C, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector[J]. P Proc Natl Acad Sci USA, 2007, 104(21): 9047. |
[21] | Caragata EP, Dutra HL, Moreira LA.Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia[J]. Trends Parasitol, 2016, 32(3): 207-218. |
[22] | Whittaker RH.Vegetation of the Siskiyou Mountains, Oregon and California[J]. Ecol Monogr, 1960, 30(3): 279-338. |
[23] | Duguma D, Hall MW, Rugman-Jones P, et al. Developmental succession of the microbiome of Culex mosquitoes[J]. BMC Microbiol, 2015, 15(1): 1-13. |
[24] | Duguma D, Rugman-Jones P, Kaufman MG, et al. Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance[J]. PLoS One, 2013, 8(8): e72522. |
[25] | Muturi EJ, Kim CH, Bara J, et al. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa[J]. Parasit Vectors, 2016, 9(1): 1-11. |
[26] | Pidiyar V, Kaznowski A, Narayan NB, et al. Aeromonas culicicola sp nov., from the midgut of Culex quinquefasciatus[J]. Int J Syst Evol Microbiol, 2002, 52(Pt 5): 1723-1728. |
[27] | Osei-Poku J, Mbogo CM, Palmer WJ, et al. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya[J]. Mol Ecol, 2012, 21(20): 5138-5150. |
[28] | Minard G, Tran FH, Van VT, et al. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives[J]. Front Microbiol, 2015, 6: 970. |
[29] | Minard G, Tran FH, Dubost A, et al. Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study[J]. Front Cell Infect Microbiol, 2014, 4: 59. |
[30] | Baldini F, Segata N, Pompon J, et al. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae[J]. Nat Commun, 2014, 5(S 1/2): 3985. |
[31] | Wang Y, Gilbreath TM, Kukutla P, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PLoS One, 2011, 6(9): e24767. |
[32] | Linenberg I, Christophides GK, Gendrin M.Larval diet affects mosquito development and permissiveness to Plasmodium infection[J]. Sci Rep, 2016, 6: 38230. |
[33] | Gusmão DS, Santos AV, Marini DC, et al. First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera : Culicidae): new perspectives for an insect-bacteria association[J]. Mem Inst Oswaldo Cruz, 2007, 102(8): 919-924. |
[34] | Nunes RD, Ventura-Martins G, Moretti DM, et al. Polyphenol-rich diets exacerbate AMPK-mediated autophagy, decreasing proliferation of mosquito midgut microbiota, and extending vector lifespan[J]. PLoS Negl Trop Dis, 2016, 10(10): e0005034. |
[35] | Yun JH, Roh SW, Whon TW, et al. Insect gut bacterial diversity determined by environmental habitat, diet, develop-mental stage, and phylogeny of host[J]. Appl Environ Microbiol, 2014, 80(17): 5254-5264. |
[36] | Moll RM, Romoser WS, Modrzakowski MC, et al. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito(Diptera ∶ Culicidae) metamorphosis[J]. J Med Entomol, 2001, 38(1): 29-32. |
[37] | Foster WA.Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40(1): 443-474. |
[38] | Zouache K, Raharimalala FN, Raquin V, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3): 377-389. |
[39] | Rani A, Sharma A, Rajagopal R, et al. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector[J]. BMC Microbiol, 2009, 9(1): 96. |
[40] | David M, Santos LMBD, Vicente ACP, et al. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan[J]. Mem Inst Oswaldo Cruz, 2016, 111(9): 577-587. |
[41] | Gusmão DS, Santos AV, Marini DC, et al. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti(Diptera ∶ Culicidae) (L.) and dynamics of bacterial colonization in the midgut[J]. Acta Tropica, 2010, 115(3): 275-281. |
[42] | Dada N, Jumas-Bilak E, Manguin S, et al. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers[J]. Parasit Vectors, 2014, 7(1): 391. |
[43] | Morris CE, Sands DC, Vinatzer BA, et al. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle[J]. ISME J, 2008, 2(3): 321-334. |
[44] | Moro CV, Tran FH, Raharimalala FN, et al. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus[J]. BMC Microbiol, 2013, 13(1): 70. |
[45] | Coon KL, Brown MR, Strand MR.Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats[J]. Mol Ecol, 2016, 25(22): 5806-5826. |
[46] | Boissière A, Tchioffo MT, Bachar D, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5): e1002742. |
[47] | Yadav KK, Bora A, Datta S, et al. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India[J]. Parasit Vectors, 2015, 8(1): 641. |
[48] | Yadav KK, Datta S, Naglot A, et al. Diversity of cultivable midgut microbiota at different stages of the Asian tiger mosquito, Aedes albopictus from Tezpur, India[J]. PLoS One, 2016, 11(12): e0167409. |
[49] | Chao J, Wistreich GA, Moore J.Failure to isolate microorganisms from within mosquito eggs[J]. Ann Entomol Soc Am, 1963, 56(4): 559-561. |
[50] | Tchioffo MT, Boissière A, Abate L, et al. Dynamics of bacterial community composition in the malaria mosquito's epithelia[J]. Front Microbio, 2016, 6: 1500. |
[51] | Sharma P, Sharma S, Maurya RK, et al. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies[J]. Parasit Vectors, 2014, 7(1): 235. |
[52] | Damiani C, Ricci I, Crotti E, et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia[J]. Microb Ecol, 2010, 60(3): 644-654. |
[53] | Skelton E, Rancès E, Frentiu FD, et al. A native Wolbachia endosymbiont does not limit dengue virus infection in the mosquito Aedes notoscriptus (Diptera ∶ Culicidae)[J]. J Med Entomol, 2016, 53(2): 401-408. |
[54] | Dobson SL, Bourtzis K, Braig HR, et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues[J]. Insect Biochem Mol Biol, 1999, 29(2): 153-160. |
[55] | Zouache K, Voronin D, Tran-Van V, et al. Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus[J]. PLoS One, 2009, 4(7): e6388. |
[56] | Seenivasagan T, Vijayaraghavan R.Oviposition pheromones in haematophagous insects[J]. Vitam Horm, 2010, 83(83): 597-630. |
[57] | Fouda MA, Hassan MI, Al-Daly AG, et al. Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction[J]. J Egypt Soc Parasitol, 2001, 31(3): 767-780. |
[58] | 洪涛. 孑孓的生态与防制[J]. 中国临床医生杂志, 1979, 7: 1. |
[59] | Cook PE, McGraw EA. Wolbachia pipientis: an expanding bag of tricks to explore for disease control[J]. Trends Parasitol, 2010, 26(8): 373-375. |
[60] | Moncayo AC, Lerdthusnee K, Leon R, et al. Meconial peritrophic matrix structure, formation, and meconial degeneration in mosquito pupae/pharate adults: histological and ultrastructural aspects[J]. J Med Entomol, 2005, 42(6): 939-944. |
[61] | Beard CB, O′Neill SL, Tesh RB, et al. Modification of arthropod vector competence via symbiotic bacteria[J]. Parasitol Today, 1993, 9(5): 179-183. |
[62] | Weiss B, Aksoy S.Microbiome influences on insect host vector competence[J]. Trends Parasitol, 2011, 27(11): 514-522. |
[63] | Gendrin M, Rodgers FH, Yerbanga RS, et al. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria[J]. Nat Commun, 2015, 6(6): 5921. |
[64] | Chouaia B, Rossi P, Epis S, et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts[J]. BMC Microbiol, 2012, 12(1): S2. |
[65] | Wigglesworth VB.Nutrition and metabolism[M]. Insect Physiol, Boston, MA: Springer US, 1974: 78-95. |
[66] | Minard G, Tran FH, Raharimalala FN, et al. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar[J]. FEMS Microbiol Ecol, 2013, 83(1): 63-73. |
[67] | Gaio ADO, Gusmão DS, Santos AV, et al. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera ∶ Culicidae) (L.)[J]. Parasit Vectors, 2011, 4(1): 105. |
[68] | Geiger A, Fardeau ML, Njiokou F, et al. Bacterial diversity associated with populations of Glossina spp. from Cameroon and distribution within the campo sleeping sickness focus[J]. Microb Ecol, 2011, 62(3): 632-643. |
[69] | Peck GW, Walton WE.Effect of bacterial quality and density on growth and whole body stoichiometry of Culex quinquefa-sciatus and Culex tarsalis(Diptera ∶ Culicidae)[J]. J Med Entomol, 2006, 43(1): 25-33. |
[70] | Brennan LJ, Keddie BA, Braig HR, et al. The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line[J]. PLoS One, 2008, 3(5): e2083. |
[71] | 张浩, 王春梅, 周元平, 等. 伊蚊传播登革病毒媒介效能的研究进展[J]. 热带医学杂志, 2012, 12(9): 1160-1163, 1170. |
[72] | Dong Y, Dimopoulos G.Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites[J]. J Biol Chem, 2009, 284(15): 9835-9844. |
[73] | Sharma A, Dhayal D, Singh OP, et al. Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi[J]. Acta Trop, 2013, 128(1): 41-47. |
[74] | 王艳艳. 肠道菌群影响约氏疟原虫在按蚊体内发育机制的初步研究[C]// 中国临床微生物学大会暨微生物学与免疫学论坛, 无锡, 2013. |
[75] | Cirimotich C, Ramirez J, Dimopoulos G.Native microbiota shape insect vector competence for human pathogens[J]. Cell Host Microbe, 2011, 10(4): 307-310. |
[76] | Bahia AC, Dong Y, Blumberg BJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity[J]. Environ Microbiol, 2014, 16(9): 2980-2994. |
[77] | Ye YH, Carrasco AM, Frentiu FD, et al. Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti[J]. PLoS Negl Trop Dis, 2015, 9(6): e0003894 |
[78] | Joubert DA, O′Neill SL. Comparison of stable and transient Wolbachia infection models in Aedes aegypti to block Dengue and West Nile Viruses[J]. PLoS Negl Trop Dis, 2017, 11(1): e0005275. |
[79] | Blagrove MS, Ariasgoeta-Goeta C, Failloux AB, et al. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus[J]. Proc Natl Acad Sci USA, 2012, 109(1): 255-260. |
[80] | Apte-Deshpande AD, Paingankar MS, Gokhale MD, et al. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus[J]. Indian J Med Res, 2014, 139(5): 762-768. |
[81] | Bian G, Joshi D, Dong Y, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection[J]. Science, 2013, 340(6133): 748-751. |
[82] | Hughes GL, Koga R, Xue P, et al. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae[J]. PLoS Pathog, 2011, 7(5): e1002043. |
[83] | Pan X, Zhou G, Wu J, et al. Wolbachia induces reactive oxygen species(ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci USA, 2012, 109(1): E23-E31. |
[84] | Atyame CM, Duron O, Tortosa P, et al. Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibi-lities in Culex pipiens mosquito populations[J]. Mol Ecol, 2011, 20(2): 286-298. |
[85] | Segata N, Baldini F, Pompon J, et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers[J]. Sci Rep, 2016, 6(1): 24207. |
[86] | Bourgouin C, Delécluse A, De La Torre F, et al. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression[J]. Appl Environ Microbiol, 1990, 56(2): 340-344. |
[87] | Harbison JE, Zazra D, Henry M, et al. Assessment of reactive catch basin larvicide treatments toward improved water quality using Fourstar Briquets and CocobearTM larvicide oil[J]. J Am Mosq Control Assoc, 2015, 31(3): 283-285. |
[88] | 马素媛, 王英, 赵清, 等. Bti对三带喙库蚊的杀伤效果及温度的影响[J]. 中国热带医学, 2012, 12(12): 1427-1429. |
[89] | 王蓉蓉, 汤林华, 顾政诚, 等. 苏云金杆菌以色列变种乳剂对嗜人按蚊和中华按蚊幼虫毒效的现场研究[J]. 中国病原生物学杂志, 2006, 1(2): 117-119. |
[90] | Wirth MC, Berry C, Walton WE, et al. Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry-toxin activity and suppress cry-resistance in Culex quinquefasciatus[J]. J Invertebr Pathol, 2014, 115(1): 62-67. |
[91] | Valero-Jiménez CA, Debets AJ, Van Kan JA, et al. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes[J]. Malar J, 2014, 13(1): 479. |
[92] | Husseneder C, Collier R.Paratransgenesis in termites//Bourtzis K, Miller TA. Insect symbiosis[M]. Florida: CRC Press, 2003: 361. |
[93] | Durvasula RV, Gumbs A, Panackal A, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria[J]. Proc Natl Acad Sci USA, 1997, 94(7): 3274-3278. |
[94] | Wang S, Jacobs-Lorena M.Genetic approaches to interfere with malaria transmission by vector mosquitoes[J]. Trends Biotechnol, 2013, 31(3): 185-193. |
[95] | Ren X, Hoiczyk E, Rasgon JL.Viral paratransgenesis in the malaria vector Anopheles gambiae[J]. PLoS Pathog, 2008, 4(8): e1000135. |
[96] | Favia G.Asaia paratransgenesis in mosquitoes//Benedict MQ. Transgenic insects: techniques and applications[M]. Wallingford: CABI Publishing, 2014: 227-228. |
[97] | Favia G, Ricci I, Marzorati M, et al. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria[J]. Adv Exp Med Biol, 2008, 627(1): 49-59. |
[98] | Wilke ABB, Marrelli MT.Paratransgenesis: a promising new strategy for mosquito vector control[J]. Parasit Vectors, 2015, 8(1): 1-9. |
[1] | 姜宁, 白洁, 李平, 单文琪, 周秋明, 董昊炜, 袁浩, 陶峰, 李翔宇, 马雅军, 彭恒. 基于环介导等温扩增微流控芯片技术快速检测蚊媒携带登革病毒方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 234-241. |
[2] | 乔婷婷, 陶香林, 叶长江, 李政, 周笑妍, 孙恩涛. 不同地理种群腐食酪螨遗传变异和遗传分化分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 69-77. |
[3] | 邹文健, 吴林波, 许翔, 唐烨榕, 孙晓东, 曾旭灿. 中缅边境盈江县微小按蚊嗜血习性调查[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 125-128. |
[4] | 武佳慧, 宋晓, 程鹏, 刘宏美, 郭秀霞, 王海防, 公茂庆. 靶向调控蚊虫CYP450s基因的miRNA鉴定及分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 683-690. |
[5] | 王之谦, 王敬文, 宋秀梅. 斯氏按蚊肽聚糖识别蛋白S2调节共生菌稳态的功能分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 397-403. |
[6] | 张虹, 程功. 人体挥发物对蚊虫行为影响的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 10-14. |
[7] | 曹得萍, 毋德芳, 庞明泉, 彭小红, 李大宇, 樊海宁. 棘球蚴病患者肠道菌群差异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 103-107. |
[8] | 师伟芳, 田珍灶, 周敬祝, 黄学平, 周雪梅, 吴国艳, 李琼, 廖启浪, 王丹. 2018—2020年贵州省中华按蚊抗药性调查研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 108-111. |
[9] | 贺志权, 胡亚博, 王丹, 张红卫, 刘颖, 杨成运, 钱丹, 纪鹏慧, 蒋甜甜, 鲁德领. 河南省部分地区中华按蚊对杀虫剂抗药性的监测[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 117-120. |
[10] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 河北省疟疾消除及消除后媒介种群和密度监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 806-809. |
[11] | 吕文祥, 程鹏, 彭荟, 王海洋, 刘宏美, 王海防, 郭秀霞, 公茂庆, 刘丽娟. 淡色库蚊不同发育阶段肠道菌群多样性分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 460-467. |
[12] | 王冠熙, 李雅姝, 李月月, 曹园园, 杨蒙蒙, 张梅花, 吴竞瑶, 梁成, 李菊林, 周华云, 唐建霞, 朱国鼎. 江苏省白纹伊蚊对溴氰菊酯抗性及击倒抗性突变分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 468-474. |
[13] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[14] | 张霞, 颜凤, 牟小会, 林紫敏, 聂映, 程金芝, 商正玲, 吴家红. 埃及伊蚊黄蛋白c基因的克隆、表达及其体外抗凝血作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 153-158. |
[15] | 江莉, 张耀光, 刘红霞, 王真瑜, 朱民, 吴寰宇. 疟疾蚊媒监测多重PCR方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 159-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||