中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (1): 112-119.doi: 10.12140/j.issn.1000-7423.2021.01.017
收稿日期:
2020-08-03
修回日期:
2020-11-28
出版日期:
2021-02-28
发布日期:
2021-03-10
通讯作者:
贺平
作者简介:
刘冰(1995-),女,硕士研究生,研究方向为免疫学。E-mail: 基金资助:
LIU Bing(), WANG Qi, HE Yong-jun, HE Ping*(
)
Received:
2020-08-03
Revised:
2020-11-28
Online:
2021-02-28
Published:
2021-03-10
Contact:
HE Ping
Supported by:
摘要:
原虫是一类结构简单的单细胞真核生物,种类繁多,广泛分布于自然界。医学原虫可以寄生于人体的体液、组织或细胞等,通过多种有效机制调节宿主的免疫应答,逃避宿主免疫系统的攻击,使虫体在宿主体内生存繁殖并引起疾病。本文就疟原虫、刚地弓形虫、杜氏利什曼原虫和蓝氏贾第鞭毛虫相关蛋白的免疫调节作用进行综述,以期为防治医学原虫相关的寄生虫病提供资料。
中图分类号:
刘冰, 王奇, 贺拥军, 贺平. 医学原虫相关蛋白的免疫调节作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 112-119.
LIU Bing, WANG Qi, HE Yong-jun, HE Ping. Research progress on immune regulation of medical protozoa-related proteins[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(1): 112-119.
[1] | Shen J. Lecture 8 Immune evasion of parasite[J]. Chin J Vet Parasitol, 2004,12(4):57-58. (in Chinese) |
( 沈杰. 第八讲寄生虫的免疫逃避[J]. 中国兽医寄生虫病, 2004,12(4):57-58.) | |
[2] | Tong QB, Liu SX, Cao JP. Advances in research of molecules related to the immune evasion of schistosomes[J]. Chin J Parasitol Parasit Dis, 2004,22(1):57-60. (in Chinese) |
( 童群波, 刘述先, 曹建平. 血吸虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2004,22(1):57-60.) | |
[3] |
Ahmed AK, Mun HS, Aosai FM, et al. Roles of Toxoplasma gondii-derived heat shock protein 70 in host defense against T. gondii infection[J]. Microbiol Immunol, 2004,48(11):911-915.
doi: 10.1111/j.1348-0421.2004.tb03611.x pmid: 15557751 |
[4] | Feng XM, Wang YH, Ju XH. Research progress on the mechanisms of antigenic variation in Giardia lamblia[J]. Chin J Parasitol Parasit Dis, 2012,30(4):317-320. (in Chinese) |
( 冯宪敏, 王月华, 鞠晓红. 蓝氏贾第鞭毛虫表面抗原变异机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012,30(4):317-320.) | |
[5] | Huang HB, Yang WT, Wang CF, et al. Progresses on antitumor immune mechanisms of protozoon[J]. Chin J Parasitol Parasit Dis, 2015,33(1):64-67. (in Chinese) |
( 黄海斌, 杨文涛, 王春凤, 等. 原虫抗肿瘤免疫机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(1):64-67.) | |
[6] | Chen QJ, Yin JG. Research and perspectives in parasitology[J]. Chin J Parasitol Parasit Dis, 2007,25(4):342-348. (in Chinese) |
( 陈启军, 尹继刚. 寄生虫学主要研究进展及发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2007,25(4):342-348.) | |
[7] | Liu SX, Cao JP. Research progress and prospects for vaccines against parasitic diseases[J]. Chin J Parasitol Parasit Dis, 2005,23(z1):362-368, 373. (in Chinese) |
( 刘述先, 曹建平. 寄生虫病疫苗研究的现状及展望[J]. 中国寄生虫学与寄生虫病杂志, 2005,23(z1):362-368, 373. | |
[8] |
Semblat JP, Ghumra A, Czajkowsky DM, et al. Identification of the minimal binding region of a Plasmodium falciparum IgM binding PfEMP1 domain[J]. Mol Biochem Parasitol, 2015,201(1):76-82.
doi: 10.1016/j.molbiopara.2015.06.001 pmid: 26094597 |
[9] |
Kraemer SM, Smith JD. A family affair: var genes, PfEMP1 binding, and malaria disease[J]. Curr Opin Microbiol, 2006,9(4):374-380.
doi: 10.1016/j.mib.2006.06.006 |
[10] |
Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes[J]. Cell, 1995,82(1):101-110.
doi: 10.1016/0092-8674(95)90056-x pmid: 7606775 |
[11] |
Hviid L, Jensen AT. PfEMP1-A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis[J]. Adv Parasitol, 2015,88:51-84.
doi: 10.1016/bs.apar.2015.02.004 pmid: 25911365 |
[12] |
Higgins MK, Carrington M. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families[J]. Protein Sci, 2014,23(4):354-365.
doi: 10.1002/pro.2428 |
[13] |
Chan JA, Drew DR, Reiling L, et al. Low levels of human antibodies to gametocyte-infected erythrocytes contrasts the PfEMP1-dominant response to asexual stages in P. falciparum malaria[J]. Front Immunol, 2018,9:3126.
doi: 10.3389/fimmu.2018.03126 pmid: 30692996 |
[14] |
Dolan SA, Miller LH, Wellems TE. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum[J]. J Clin Invest, 1990,86(2):618-624.
doi: 10.1172/JCI114753 pmid: 2200806 |
[15] |
Persson KE, McCallum FJ, Reiling L, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies[J]. J Clin Invest, 2008,118(1):342-351.
doi: 10.1172/JCI32138 pmid: 18064303 |
[16] |
Stubbs J, Simpson KM, Triglia T, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes[J]. Science, 2005,309(5739):1384-1387.
doi: 10.1126/science.1115257 pmid: 16123303 |
[17] |
Tham WH, Wilson DW, Reiling L, et al. Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes[J]. Infect Immun, 2009,77(6):2427-2435.
doi: 10.1128/IAI.00048-09 pmid: 19307208 |
[18] |
Duraisingh MT, Triglia T, Ralph SA, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes[J]. Embo J, 2003,22(5):1047-1057.
doi: 10.1093/emboj/cdg096 pmid: 12606570 |
[19] |
Ikarashi M, Nakashima H, Kinoshita M, et al. Distinct development and functions of resident and recruited liver Kupffer cells/macrophages[J]. J Leukoc Biol, 2013,94(6):1325-1336.
doi: 10.1189/jlb.0313144 pmid: 23964119 |
[20] |
Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development[J]. Curr Opin Immunol, 2009,21(3):321-330.
doi: 10.1016/j.coi.2009.05.015 |
[21] |
Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617.
doi: 10.3389/fmicb.2016.01617 pmid: 27799922 |
[22] |
Rénia L, Goh YS. Malaria parasites: the great escape[J]. Front Immunol, 2016,7:463.
doi: 10.3389/fimmu.2016.00463 pmid: 27872623 |
[23] |
Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria[J]. Parasitology, 2009,136(12):1445-1456.
doi: 10.1017/S0031182009990515 pmid: 19627632 |
[24] |
Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511.
doi: 10.1038/nature01097 pmid: 12368864 |
[25] |
Saito F, Hirayasu K, Satoh T, et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2017,552(7683):101-105.
doi: 10.1038/nature24994 pmid: 29186116 |
[26] |
Petter M, Haeggström M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns[J]. Mol Biochem Parasitol, 2007,156(1):51-61.
doi: 10.1016/j.molbiopara.2007.07.011 pmid: 17719658 |
[27] |
Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015,21(4):314-317.
doi: 10.1038/nm.3812 pmid: 25751816 |
[28] |
Deans AM, Rowe JA. Plasmodium falciparum: rosettes do not protect merozoites from invasion-inhibitory antibodies[J]. Exp Parasitol, 2006,112(4):269-273.
doi: 10.1016/j.exppara.2005.11.007 pmid: 16364300 |
[29] |
Yam XY, Niang M, Madnani KG, et al. Three is a crowd - new insights into rosetting in Plasmodium falciparum[J]. Trends Parasitol, 2017,33(4):309-320.
doi: 10.1016/j.pt.2016.12.012 pmid: 28109696 |
[30] |
Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617.
doi: 10.3389/fmicb.2016.01617 pmid: 27799922 |
[31] |
Singh H, Madnani K, Lim YB, et al. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection[J]. Cell Microbiol, 2017,19(6):e12715.
doi: 10.1111/cmi.v19.6 |
[32] | Yin LT, Cao L, Meng XL, et al. Bioinformatics analysis of the structure and function of the gene encoding heat shock protein 70 from Toxoplasma gondii[J]. J Pathog Biol, 2011,6(7):513-516. (in Chinese) |
( 殷丽天, 曹蕾, 孟晓丽, 等. 刚地弓形虫热休克70基因编码蛋白结构与功能的生物信息学分析[J]. 中国病原生物学杂志, 2011,6(7):513-516.) | |
[33] |
Czarnewski P, Araújo ECB, Oliveira MC, et al. Recombinant TgHSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression[J]. Front Cell Infect Microbiol, 2017,7:142.
doi: 10.3389/fcimb.2017.00142 pmid: 28487847 |
[34] |
Makino M, Uemura N, Moroda M, et al. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization[J]. Vaccine, 2011,29(10):1899-1905.
doi: 10.1016/j.vaccine.2010.12.118 |
[35] |
Dautu G, Munyaka B, Carmen G, et al. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential[J]. Exp Parasitol, 2007,116(3):273-282.
doi: 10.1016/j.exppara.2007.01.017 pmid: 17379212 |
[36] |
Mun HS, Aosai FM, Yano A. Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii[J]. Microbiol Immunol, 1999,43(5):471-479.
doi: 10.1111/j.1348-0421.1999.tb02430.x pmid: 10449253 |
[37] |
Gedik Y, Gülçe Īz S, Can H, et al. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model[J]. Trials Vaccinol, 2016,5:15-23.
doi: 10.1016/j.trivac.2015.11.002 |
[38] |
Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii[J]. Int J Parasitol, 2001,31(12):1293-1302.
doi: 10.1016/s0020-7519(01)00257-0 pmid: 11566297 |
[39] |
Ismael AB, Sekkai D, Collin C, et al. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis[J]. Infect Immun, 2003,71(11):6222-6228.
doi: 10.1128/iai.71.11.6222-6228.2003 pmid: 14573640 |
[40] |
Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice[J]. Vaccine, 2019,37(8):1118-1125.
doi: 10.1016/j.vaccine.2018.12.044 pmid: 30670302 |
[41] |
Ismael AB, Dimier-Poisson I, Lebrun M, et al. Mic1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital toxoplasmosis in mice[J]. J Infect Dis, 2006,194(8):1176-1183.
doi: 10.1086/507706 pmid: 16991094 |
[42] |
Yang DY, Liu J, Hao P, et al. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum[J]. Parasitol Res, 2015,114(10):3791-3799.
doi: 10.1007/s00436-015-4609-6 pmid: 26141436 |
[43] |
Gong P, Cao L, Guo Y, et al. Toxoplasma gondii: protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice[J]. Exp Parasitol, 2016,166:131-136.
doi: 10.1016/j.exppara.2016.04.003 pmid: 27059254 |
[44] |
Denkers EY, Bzik DJ, Fox BA, et al. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii[J]. Infect Immun, 2012,80(2):476-482.
doi: 10.1128/IAI.05974-11 |
[45] |
Ong YC, Reese ML, Boothroyd JC. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6[J]. J Biol Chem, 2010,285(37):28731-28740.
doi: 10.1074/jbc.M110.112359 pmid: 20624917 |
[46] |
Butcher BA, Fox BA, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control[J]. PLoS Pathog, 2011,7(9):e1002236.
doi: 10.1371/journal.ppat.1002236 pmid: 21931552 |
[47] |
Jensen KDC, Hu K, Whitmarsh RJ, et al. Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15[J]. Infect Immun, 2013,81(6):2156-2167.
doi: 10.1128/IAI.01185-12 |
[48] |
Dunay IR, DaMatta RA, Fux B, et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii[J]. Immunity, 2008,29(2):306-317.
doi: 10.1016/j.immuni.2008.05.019 |
[49] |
Baird JR, Fox BA, Sanders KL, et al. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment[J]. Cancer Res, 2013,73(13):3842-3851.
doi: 10.1158/0008-5472.CAN-12-1974 pmid: 23704211 |
[50] |
Fox BA, Sanders KL, Rommereim LM, et al. Secretion of rhoptry and dense granule effector proteins by nonreplicating Toxoplasma gondii uracil auxotrophs controls the development of antitumor immunity[J]. PLoS Genet, 2016,12(7):e1006189.
doi: 10.1371/journal.pgen.1006189 pmid: 27447180 |
[51] |
Du J, An R, Chen L, et al. Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation[J]. J Biol Chem, 2014,289(18):12578-12592.
doi: 10.1074/jbc.M113.544718 pmid: 24648522 |
[52] |
Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010,8(6):484-495.
doi: 10.1016/j.chom.2010.11.005 |
[53] |
Yamamoto M, Ma JS, Mueller C, et al. ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18[J]. J Exp Med, 2011,208(7):1533-1546.
doi: 10.1084/jem.20101660 |
[54] |
Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012,10(11):766-778.
doi: 10.1038/nrmicro2858 |
[55] |
McLeod R, Estes RG, Mack DG, et al. Immune response of mice to ingested Toxoplasma gondii: a model of Toxoplasma infection acquired by ingestion[J]. J Infect Dis, 1984,149(2):234-244.
doi: 10.1093/infdis/149.2.234 pmid: 6699433 |
[56] |
Luft B-J, Remington J-S. Toxoplasmic encephalitis in AIDS[J]. Clin Infect Dis, 1992,15(2):211-222.
doi: 10.1093/clinids/15.2.211 pmid: 1520757 |
[57] |
Radke JR, Guerini MN, Jerome M, et al. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii[J]. Mol Biochem Parasitol, 2003,131(2):119-127.
doi: 10.1016/s0166-6851(03)00198-1 pmid: 14511810 |
[58] |
Jung C, Lee CY, Grigg ME. The SRS superfamily of Toxoplasma surface proteins[J]. Int J Parasitol, 2004,34(3):285-296.
doi: 10.1016/j.ijpara.2003.12.004 |
[59] | Jing BQ, Xie YE, HU WM, et al. Immunogenecity of recombinant Leishmania donovani peroxidoxin-1, tryparedoxin peroxidase, hypothetical protein CAJ07026.1 and GDP-mannose pyrophosphorylase in BALB/c mice[J]. Chin J Parasitol Parasit Dis, 2017,35(6):563-569. (in Chinese) |
( 敬保迁, 谢勇恩, 胡为民, 等. 重组杜氏利什曼原虫Pxn1、TryP、假定蛋白CAJ07026和GDPMP蛋白刺激BALB/c小鼠的免疫应答状态[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(6):563-569.) | |
[60] |
Bhattacharya P, Ghosh S, Ejazi SA, et al. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+T cells correlates with parasite load in Indian kala-azar patients infected with Leishmania donovani [J]. PLoS Negl Trop Dis, 2016,10(2):e0004422.
doi: 10.1371/journal.pntd.0004422 pmid: 26829554 |
[61] |
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant [J]. PLoS Negl Trop Dis, 2014,8(12):e3391.
doi: 10.1371/journal.pntd.0003391 pmid: 25500571 |
[62] |
Barr SD, Gedamu L. Role of peroxidoxins in Leishmania chagasi survival. Evidence of an enzymatic defense against nitrosative stress[J]. J Biol Chem, 2003,278(12):10816-10823.
doi: 10.1074/jbc.M212990200 pmid: 12529367 |
[63] |
Stober CB, Lange UG, Roberts MTM, et al. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection[J]. Vaccine, 2006,24(14):2602-2616.
doi: 10.1016/j.vaccine.2005.12.012 pmid: 16406227 |
[64] | Li JF. Preliminary studies of DNA vaccine with amastin gene against Leishmania donovani[D]. Chengdu: Sichuan University, 2007. ( in Chinese) |
( 李金福. 杜氏利什曼原虫amastin基因DNA疫苗的初步研究[D]. 成都: 四川大学, 2007.) | |
[65] |
Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia[J]. Microbes Infect, 2010,12(1):71-80.
doi: 10.1016/j.micinf.2009.09.008 |
[66] | Chen XX, Fu TX, Zhao CL, et al. Experimental study on the protective antigen of G. intestinalis[J]. Chin Trop Med, 2007,7(12):2177-2179. (in Chinese) |
( 陈锡欣, 傅婷霞, 赵长磊, 等. 蓝氏贾第鞭毛虫保护性抗原的实验研究[J]. 中国热带医学, 2007,7(12):2177-2179.) | |
[67] |
Rudenko G. African trypanosomes: the genome and adaptations for immune evasion[J]. Essays Biochem, 2011,51:47-62.
doi: 10.1042/BSE0510047 |
[68] |
Nash TE, Banks SM, Alling DW, et al. Frequency of variant antigens in Giardia lamblia[J]. Exp Parasitol, 1990,71(4):415-421.
doi: 10.1016/0014-4894(90)90067-m pmid: 1699782 |
[69] | Wang Y, Tian XF. Immune evasion mechanisms of Giardia lamblia[J]. Chin J Zoonoses, 2013,29(9):909-913. (in Chinese) |
( 王洋, 田喜凤. 蓝氏贾第鞭毛虫的免疫逃避机制[J]. 中国人兽共患病学报, 2013,29(9):909-913.)
doi: 10.3969/cjz.j.issn.1002-2694.2013.09.017 |
[1] | 李佳铭, 王艺璇, 杨宁爱, 马慧慧, 兰敏, 刘春兰, 赵志军. 刚地弓形虫ROP16蛋白对MH-S细胞极化和凋亡的影响及其相关机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 579-586. |
[2] | 梁乐, 张璟, 沈玉娟, 胡媛, 曹建平. 环鸟苷酸腺苷酸促日本血吸虫感染小鼠肝虫卵肉芽肿形成及纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 441-445. |
[3] | 杨成运, 贺志权, 鲁德领, 钱丹, 刘颖, 李素华, 周瑞敏, 邓艳, 张红卫, 王昊, 赵东阳, 郭万申. 2020年河南省内脏利什曼病病例的流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 481-486. |
[4] | 卓怡呈, 杨海成, 刘程豪, 张宝财, 多小勇, 张示杰. 骨桥蛋白表达水平对多房棘球蚴原头节生长发育的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 299-304. |
[5] | 王婷, 杨庆利, 冷静, 李宝莹, 申继清, 戴悦. 华支睾吸虫高迁移率族蛋白1同源蛋白的表达及其对小鼠巨噬细胞核转录因子-κB活化作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 305-308. |
[6] | 朱名超, 朱娅. HIV合并人芽囊原虫和蓝氏贾第鞭毛虫感染1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 315-318. |
[7] | 曹天行, 刘军龙, 张志刚, 史康妍, 石苗, 关贵全, 李有全, 殷宏, 罗建勋. 环形泰勒虫重组TA04380蛋白的原核表达及ELISA的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 362-368. |
[8] | 李美, 周何军, 尹建海, 张丽, 涂宏. 疟疾患者体内原虫密度与治疗措施调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 379-383. |
[9] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[10] | 石天琪, 陈军虎. 间日疟原虫入侵网织红细胞相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 396-401. |
[11] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
[12] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[13] | 江莉, 张耀光, 刘红霞, 王真瑜, 朱民, 吴寰宇. 疟疾蚊媒监测多重PCR方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 159-167. |
[14] | 孙佳宁, 陈婷, 董文鸽. 缺齿甲胁虱线粒体基因组测序与分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 194-203. |
[15] | 陈慧慧, 李云霞, 宁超群, 邓艳, 张红卫, 韦雪芳, 锁慧芳, 张颋, 刘琴, 陈军虎, 田利光. 洛阳市人群芽囊原虫感染现状及基因亚型分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 216-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||