CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2017, Vol. 35 ›› Issue (2): 173-179.
• REVIEWS • Previous Articles Next Articles
Hui-wen XU1,2, Jian-ping CAO3, Kui-yang ZHENG1, Wei PAN1,*()
Received:
2016-09-01
Online:
2017-04-20
Published:
2017-05-02
Contact:
Wei PAN
E-mail:panwei525@126.com
Supported by:
CLC Number:
Hui-wen XU, Jian-ping CAO, Kui-yang ZHENG, Wei PAN. Advances on the infection of parasites in treating inflammatory bowel diseases[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(2): 173-179.
[1] | Koloski NA, Bret L, Radford-Smith G.Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature[J]. World J Gastroenterol, 2008, 14(2): 165-173. |
[2] | Shea-Donohue T, Sun R, Bohl JA, et al. Enteric nematodes and the path to up-regulation of type 2 cytokines IL-4 and IL-13[J]. Cytokine, 2015, 75(1): 62-67. |
[3] | Chu KM, Watermeyer G, Shelly L, et al. Childhood helminth exposure is protective against inflammatory bowel disease: a case control study in South Africa[J]. Inflamm Bowel Dis, 2013, 19(3): 614-620. |
[4] | Strachan DP.Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260. |
[5] | Rook GA.Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis[J]. Immunology, 2009, 126(1): 3-11. |
[6] | Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review[J]. Gastroenterology, 2012, 142(1): 46-54. |
[7] | Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study[J]. Gastroenterology, 2013, 145(1): 158-165. |
[8] | 欧阳钦, 王玉芳, 胡仁伟, 等. 中国炎症性肠病患病情况分析[J]. 中华消化杂志, 2008, 28(12): 814-817. |
[9] | Ruyssers NE, DeWinter BY, De Man JG, et al. Worms and the treatment of inflammatory bowel disease: are molecules the answer?[J]. Clin Dev Immunol, 2008, 2008: 567314. |
[10] | Elliott DE, Weinstock JV.Where are we on worms[J].Curr Opin Gastroenterol, 2012, 28(6): 551-556. |
[11] | Elliott DE, Weinstock JV.Helminth-host immunological interactions: prevention and control of immune-mediated diseases[J]. Ann N Y Acad Sci, 2012, 1247: 83-96. |
[12] | Weinstock JV, Elliott DE.Translatability of helminth therapy in inflammatory bowel diseases[J]. Int J Parasitol, 2013, 43(314): 245-251. |
[13] | Van LJ, Philpott D, Griffiths AM.Genetic profiling in inflammatory bowel disease: from association to bedside[J]. Gastroenterology, 2011, 141(5): 1566-1571. |
[14] | Harris NL.Intimate gut interactions: helminths and the microbiota[J]. Cell Res, 2016, 26(8): 861-862. |
[15] | Xavier RJ, Podolsky DK.Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427-434. |
[16] | Ramanan D, Tang MS, Bowcutt R, et al. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus[J]. Immunity, 2014, 41(2): 311-324. |
[17] | Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease[J]. Nature, 2001, 411(6837): 599-603. |
[18] | Elliott DE, Setiawan T, Metwali A, et al. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice[J]. Eur J Immunol, 2004, 34(10): 2690-2698. |
[19] | Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357. |
[20] | Yamaguchi Y, Takahashi H, Satoh T, et al. Natural killer cells control a T-helper 1 response in patients with Behcet’s disease[J]. Arthritis Res Ther, 2010, 12(3): R80. |
[21] | Elliott DE, Li J, Blum A, et al. Exposure to schistosome eggs protects mice from TNBS-induced colitis[J]. Am J Physiol, 2003, 284(3): G385-391. |
[22] | Moreels TG, Nieuwendijk RJ, De Man JG, et al. Concurrent infection with Schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats[J]. Gut, 2004, 53(1): 99-107. |
[23] | Kim SJ, Kim YG, Kim DS, et al. Oldenlandia diffusa ameliorates dextran sulphate sodium-induced colitis through inhibition of NF-κB activation[J]. Am J Chin Med, 2011, 39(5): 957-969. |
[24] | Motomura Y, Wang H, Deng Y, et al. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis[J]. Clin Exp Immunol, 2009, 155(1): 88-95. |
[25] | 郭爱叶, 蔺西萌, 张玉琴, 等. 细胞因子IL-4、IL-9和IgE在肠道蠕虫感染者中的水平及临床意义[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(2): 110-113. |
[26] | Finlay CM, Walsh KP, Mills KH.Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases[J]. Immunol Rev, 2014, 259(1): 206-230. |
[27] | Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141. |
[28] | Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132. |
[29] | Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease[J]. Gut, 2003, 52(1): 65-70. |
[30] | 许云飞, 杨文涛, 王春凤, 等. CD4+CD25+调节性T细胞在蠕虫感染免疫中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(2): 148-151. |
[31] | Zaccone P, Burton O, Miller N, et al. Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice[J]. Eur J Immunol, 2009, 39(4): 1098-1107. |
[32] | Zaccone P, Burton OT, Gibbs SE, et al. The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4+T cells[J]. Eur J Immunol, 2011, 41(9): 2709-2718. |
[33] | Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+CD25(high) T cells in inflammatory bowel disease[J]. Gastroenterology, 2005, 128(7): 1868-1878. |
[34] | Hasby EA, HasbySaad MA, Shohieb Z, et al. FoxP3+ T regulatory cells and immunomodulation after Schistosoma mansoni egg antigen immunization in experimental model of inflammatory bowel disease[J]. Cell Immunol, 2015, 295(1): 67-76. |
[35] | Elliott DE, Metwali A, Leung J, et al. Colonization with Heligmosomoides polygyrus suppresses mucosal IL-17 production[J]. J Immunol, 2008, 181(4): 2414-2419. |
[36] | Strober W, Fuss I, Mannon P.The fundamental basis of inflammatory bowel disease[J]. J Clin Invest, 2007, 117(3): 514-521. |
[37] | Dalal SR, Kwon JH.The role of MicroRNA in inflammatory bowel disease[J]. Gastroenterol Hepatol(NY), 2010, 6(11): 714-722. |
[38] | Monteleone I, Pallone F, Monteleone G.Th17-cytokine blockers as a new approach for treating inflammatory bowel disease[J]. Ann Med, 2011, 43(3): 172-178. |
[39] | Mangan NE, Fallon RE, Smith P, et al. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells[J]. J Immunol, 2004, 173(10): 6346-6356. |
[40] | Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis[J]. Nature, 2013, 502(7470): 245-248. |
[41] | Farache J, Zigmond E, Shakhar G, et al. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense[J]. Immunol Cell Biol, 2013, 91(3): 232-239. |
[42] | Silva MA.Intestinal dendritic cells and epithelial barrier dysfunction in Crohn’s disease[J]. Inflamm Bowel Dis, 2009, 15(3): 436-453. |
[43] | Hart AL, Al-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases[J]. Gastroenterology, 2005, 129(1): 50-65. |
[44] | Mann ER, Landy JD, Bernardo D, et al. Intestinal dendritic cells: their role in intestinal inflammation, manipulation by the gut microbiota and differences between mice and men[J]. Immunol Lett, 2013, 150(112): 30-40. |
[45] | Whelan RA, Hartmann S, Rausch S.Nematode modulation of inflammatory bowel disease[J]. Protoplasma, 2012, 249(4): 871-886. |
[46] | Balic A, Smith KA, Harcus Y, et al. Dynamics of CD11c(+) dendritic cell subsets in lymph nodes draining the site of intestinal nematode infection[J]. Immunol Lett, 2009, 127(1): 68-75. |
[47] | Cruickshank SM, Deschoolmeester ML, Svensson M, et al. Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris in fection[J]. J Immunol, 2009, 182(5): 3055-3062. |
[48] | Smith KA, Hochweller K, Hammerling GJ, et al. Chronic helminth infection promotes immune regulation in vivo through dominance of CD11cloCD103-dendritic cells[J]. J Immunol, 2011, 186(12): 7098-7109. |
[49] | Hang L, Setiawan T, Blum AM, et al. Heligmosomoides polygyrus infection can inhibit colitis through direct interaction with innate immunity[J]. J Immunol, 2010, 185(6): 3184-3189. |
[50] | Blum AM, Hang L, Setiawan T, et al. Heligmosomoides polygyrus bakeri induces tolerogenic dendritic cells that block colitis and prevent antigen-specific gut T cell responses[J]. J Immunol, 2012, 189(5): 2512-2520. |
[51] | MacDonald TT, Monteleone I, Fantini MC, et al. Regulation of homeostasis and inflammation in the intestine[J]. Gastroenterology, 2011, 140(6): 1768-1775. |
[52] | Bar-On L, Zigmond E, Jung S.Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages[J]. Semin Immunol, 2011, 23(1): 58-64. |
[53] | Ince MN, Elliott DE.Immunologic and molecular mechanisms in inflammatory bowel disease[J]. Surg Clin North Am, 2007, 87(3): 681-696. |
[54] | Smith P, Mangan NE, Walsh CM, et al. Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism[J]. J Immunol, 2007, 178(7): 4557-4566. |
[55] | Hunter MM, Wang A, Parhar KS, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice[J]. Gastroenterology, 2010, 138(4): 1395-1405. |
[56] | Gordon S.Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1): 23-35. |
[57] | Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, et al. IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis[J]. Eur J Immunol, 2008, 38(2): 576-586. |
[58] | Rodriguez PC, Zea AH, DeSalvo J, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes[J]. J Immunol, 2003, 171(3): 1232-1239. |
[59] | Rodriguez PC, Quiceno DG, Ochoa AC.L-arginine availability regulates T-lymphocyte cell-cycle progression[J]. Blood, 2007, 109(4): 1568-1573. |
[60] | Spits H, Artis D, Colonna M, et al. Innate lymphoid cells--a proposal for uniform nomenclature[J]. Nat Rev Immunol, 2013, 13(2): 145-149. |
[61] | Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues[J]. Nat Immunol, 2013, 14(3): 221-229. |
[62] | Peters CP, Mjosberg JM, Berning JH, et al. Innate lymphoid cells in inflammatory bowel diseases[J]. Immunol Lett, 2016, 172: 124-131. |
[63] | Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity[J]. Nature, 2009, 457(7230): 722-725. |
[64] | Colonna M.Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity[J]. Immunity, 2009, 31(1): 15-23. |
[65] | Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells[J]. Immunity, 2013, 38(4): 769-781. |
[66] | Geremia A, Arancibia-Carcamo CV, Fleming MP, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease[J]. J Exp Med, 2011, 208(6): 1127-1133. |
[67] | Huang Y, Guo L, Qiu J, et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells[J]. Nat Immunol, 2015, 16(2): 161-169. |
[68] | Round JL, Mazmanian SK.The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009, 9(5): 313-323. |
[69] | Sartor RB.Microbial infiuences in infiammatory bowel diseases[J]. Gastroenterology, 2008, 134(2): 577-594. |
[70] | Iqbal N, Oliver JR, Wagner FH, et al. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis[J]. J Exp Med, 2002, 195(1): 71-84. |
[71] | Ramanan D, Cadwell K.Intrinsic defense mechanisms of the intestinal epithelium[J]. Cell Host Microbe, 2016, 19(4): 434-441. |
[72] | Ramanan D, Bowcutt R, Lee SC, et al. Helminth infection promotes colonization resistance via type 2 immunity[J]. Science, 2016, 352(6285): 608-612. |
[73] | Summers RW, Elliott DE, Qadir K, et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease[J]. Am J Gastroenterol, 2003, 98(9): 2034-2041. |
[74] | Summers RW, Elliott DE, Urban JF Jr, et al. Trichuris suis therapy in Crohn’s disease[J]. Gut, 2005, 54(1): 87-90. |
[75] | Summers RW, Elliott DE, Urban JF Jr, et al. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial[J]. Gastroenterology, 2005, 128(4): 825-832. |
[76] | Sandborn WJ, Elliott DE, Weinstock J, et al. Randomised clinical trial: the safety and tolerability of Trichuris suis ova in patients with Crohn’s disease[J]. Aliment Pharmacol Ther, 38(3): 255-263. |
[77] | Croese J, O′Neil J, Masson J, et al. A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors[J]. Gut, 2006, 55(1): 136-137. |
[78] | 丁忆晗, 周瑞, 杨小迪, 等. 过继转移在蠕虫调控过敏性和自身免疫性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4): 290-294. |
[79] | 唐春莲, 申志琴, 雷家慧, 等. 蠕虫感染在预防与治疗炎症性肠病中的作用和机制[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(4): 1-6. |
[80] | Van Kruiningen HJ, West AB.Potential danger in the medical use of Trichuris suis for the treatment of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2005, 11(5): 515. |
[81] | Bernstein CN.Epidemiologic clues to inflammatory bowel disease[J]. Curr Gastroenterol Rep, 2010, 12(6): 495-501. |
[82] | Zaccone P, Burton OT, Cooke A.Interplay of parasite-driven immune responses and autoimmunity[J]. Trends Parasitol, 2008, 24(1): 35-42. |
[83] | Rodgers DT, McGrath MA, Pineda MA, et al. The parasitic worm product ES-62 targets myeloid differentiation factor 88-dependent effector mechanisms to suppress antinuclear antibody production and proteinuria in MRL/lpr mice[J]. Arthritis Rheumatol, 2015, 67(4): 1025-1035. |
[84] | Pineda MA, Rodger DT, Al-Riyami L, et al. ES-62 protects against collagen-induced arthritis by resetting interleukin-22 toward resolution of inflammation in the joints[J]. Arthritis Rheumatol, 2014, 66(6): 1492-1503. |
[85] | Weng M, Huntley D, Huang IF, et al. Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis[J]. J Immunol, 2007, 179(7): 4721-4731. |
[86] | Wang A, Fernando M, Leung G, et al. Exacerbation of oxazolone colitis by infection with the helminth Hymenolepis diminuta: involvement of IL-5 and eosinophils[J]. Am J Pathol, 2010, 177(6): 2850-2859. |
[87] | Heller F, Fuss IJ, Nieuwenhuis EE, et al. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells[J]. Immunity, 2002, 17(5): 629-638. |
[1] | YANG Jinting, HUANG Xiaobin, WANG Yujuan, GUO Xianguo, ZHANG Xianzheng, YANG Huijuan, ZHENG Xiaoyan. Myotis fimbriatus ectoparasite infection and the morphological and phylogenetic analysis of Nycteribiidae in Dali, Yunnan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 452-458. |
[2] | WANG Feng, WU Fan, LI Linlin, HUANG Qingqing. Prevalence of parasitic infections in wild mice in Wuhu City, Anhui Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 516-519. |
[3] | XIE Yi, WANG Ying, WANG Xu, SHI Dandan, FU Meihua, LI Chunyang, WU Weiping, DAN Bazeli, LIAO Sa, ZHANG Kaige, DENG Xueying, GUAN Yayi. Investigation of fecal parasite pathogens in domestic dogs based on high-throughput sequencing [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 325-330. |
[4] | RONG Zhi-li, SHI Ting-ting. A misdiagnosed case of brain sparganosis mansoni [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 817-820. |
[5] | XU Zhi-peng, JI Min-jun, WU Guan-ling. The toxicological and pharmacological effects of parasite-derived components on the host [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 561-571. |
[6] | LI Mei, ZHOU He-jun, YIN Jian-hai, ZHANG Li, TU Hong. Investigation on parasite density and treatment measures in malaria patients [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 379-383. |
[7] | PAN Xiao-wen, WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong. Research advances on exosome and its functions to parasitic helminths [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 390-395. |
[8] | JIANG Li, ZHANG Yao-guang, LIU Hong-xia, WANG Zhen-yu, ZHU Min, WU Huan-yu. Establishment of multiplex PCR for malaria-transmitting vector surveillance [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 159-167. |
[9] | JING Wen-wen, CHENG Xun-jia. Application and prospect of multidisciplinary new detection technology in the diagnosis of parasite infections [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 20-27. |
[10] | CAI Xuan, YANG Ya-ming, LI Ben-fu, YAN Xin-liu, PENG Jia, ZI Jin-rong, WU Fang-wei. Investigation on the prevalence of human parasitic infections in the ecoregion of southern part of Yunnan-Guangxi-Guangdong neighboring area, Yunnan Province in 2015 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 848-852. |
[11] | SONG Xiu-mei, WANG Jing-wen. Influence of nutritional metabolism of Anopheles on its transmission capability of malaria parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 617-620. |
[12] | XU Feng-yan, YANG Yong, GAO Xin, LIU Xiao-lei, WANG Yang, LIU Ming-yuan, ZHANG Yuan-yuan, BAI Xue. Advances in research on parasite proteomics of extracellular vesicles [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 526-532. |
[13] | WANG Zhen-yu, WU Huan-yu, JIANG Li, MA Xiao-jiang, ZHANG Yao-guang, HE Yan-yan, ZHU Qian. Surveillance and analysis of parasitic infection in food on market in Shanghai during 2015—2019 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 347-351. |
[14] | LIU Yi, CAI Yu-chun, CHEN Shao-hong, CHEN Jia-xu. Advances in research on the roles of natural killer T cells in immune responses to parasitic infections [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 477-481. |
[15] | Li JIANG, Pu-yan HUANG, Huan-yu Wu, Zhen-yu WANG, Bin ZHENG, Chang-yi GUO. Current status of institutional capabilities of officially accredited and approved laboratories in detecting parasites-parasitic diseases in China [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(2): 224-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||