CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (6): 749-755.doi: 10.12140/j.issn.1000-7423.2023.06.013
• REVIEWS • Previous Articles Next Articles
MA Yue(), ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi*(
)
Received:
2023-08-03
Revised:
2023-10-26
Online:
2023-12-30
Published:
2023-12-22
Contact:
* E-mail: Supported by:
CLC Number:
MA Yue, ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi. Research progress on the regulation of miRNA in the infection of apicomplexan parasites[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 749-755.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.06.013
[1] |
Ajila V, Colley L, Ste-Croix DT, et al. P-TarPmiR accurately predicts plant-specific miRNA targets[J]. Sci Rep, 2023, 13(1): 332.
doi: 10.1038/s41598-022-27283-8 pmid: 36609461 |
[2] | Wu ZF, Ding YF, AYNISAHAN RZ, et al. Effect of microRNA-769-3p on the proliferation and migration ability of the KSHV infected nerve cell SH-SY5Y[J]. Chin J Clin Pharmacol, 2023, 39(19): 2775-2779. (in Chinese) |
(吴肇滏, 丁雨飞, 阿依妮萨罕•如则, 等. 微小RNA-769-3p对KSHV感染的神经细胞SH-SY5Y的增殖和迁移能力的影响[J]. 中国临床药理学杂志, 2023, 39(19): 2775-2779.) | |
[3] | Zhang BT, Yuan W, Liu XY, et al. Screening and functional study of key miRNAs in circulating exosomes of hypertension[J]. Chin Pharmacol Bull, 2022, 38(4): 544-551. (in Chinese) |
(张波涛, 袁雯, 刘晓艳, 等. 高血压循环外泌体中关键miRNA的筛选及功能研究[J]. 中国药理学通报, 2022, 38(4): 544-551.) | |
[4] |
Li JJ, Huang MJ, Li Z, et al. Identification of potential whole blood microRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling[J]. Biochem Biophys Res Commun, 2018, 506(3): 471-477.
doi: 10.1016/j.bbrc.2018.10.072 |
[5] |
He JJ, Ma J, Wang JL, et al. Analysis of miRNA expression profiling in mouse spleen affected by acute Toxoplasma gondii infection[J]. Infect Genet Evol, 2016, 37: 137-142.
doi: 10.1016/j.meegid.2015.11.005 |
[6] | Liu LP, Tu SY, Yang AH, et al. Research progress of miRNA and its target genes regulating plant root growth and development[J]. J Chin Agric Univ, 2022, 27(11): 47-59. (in Chinese) |
(刘立盘, 涂圣勇, 杨爱红, 等. miRNA及其靶基因调控植物根系生长发育的研究进展[J]. 中国农业大学学报, 2022, 27(11): 47-59.) | |
[7] | Hakimi MA, Ménard R. Do apicomplexan parasites hijack the host cell microRNA pathway for their intracellular development?[J]. F1000 Biol Rep, 2010, 2: 42. |
[8] |
Shapira S, Speirs K, Gerstein A, et al. Suppression of NF-kappaB activation by infection with Toxoplasma gondii[J]. J Infect Dis, 2002, 185(Suppl 1): S66-S72.
doi: 10.1086/jid.2002.185.issue-s1 |
[9] |
Moro L, Bardají A, Macete E, et al. Placental microparticles and microRNAs in pregnant women with Plasmodium falciparum or HIV infection[J]. PLoS One, 2016, 11(1): e0146361.
doi: 10.1371/journal.pone.0146361 |
[10] |
Cai YH, Chen H, Mo XW, et al. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages[J]. Cell Signal, 2014, 26(6): 1204-1212.
doi: 10.1016/j.cellsig.2014.02.013 |
[11] | Liu K, Huang HB, Yang GL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018, 36(4): 405-408. (in Chinese) |
(刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 405-408.) | |
[12] | Zhang MG, Gong PT, Zhang XC, et al. The recombinant glycoprotein GP900 of Cryptosporidium parvum induced activation of Akt and MAPK pathways in HCT-8 cells[J]. J Pathog Biol, 2018, 13(5): 457-461, 467. (in Chinese) |
(张梦鸽, 宫鹏涛, 张西臣, 等. 微小隐孢子虫糖蛋白GP900对HCT-8细胞Akt和MAPK通路的影响[J]. 中国病原生物学杂志, 2018, 13(5): 457-461, 467.) | |
[13] | Mammari N, Halabi MA, Yaacoub S, et al. Toxoplasma gondii modulates the host cell responses: an overview of apoptosis pathways[J]. Biomed Res Int, 2019, 2019: 6152489. |
[14] |
Zeiner GM, Norman KL, Thomson JM, et al. Toxoplasma gondii infection specifically increases the levels of key host microRNAs[J]. PLoS One, 2010, 5(1): e8742.
doi: 10.1371/journal.pone.0008742 |
[15] |
Xiao J, Li Y, Prandovszky E, et al. microRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway[J]. Neuroscience, 2014, 268: 128-138.
doi: 10.1016/j.neuroscience.2014.03.015 pmid: 24657774 |
[16] |
El-Sayad M, Abdel Rahman M, Hussein N, et al. MicroRNA-155 expression and butyrylcholinesterase activity in the liver tissue of mice infected with Toxoplasma gondii (avirulent and virulent strains)[J]. Acta Parasitol, 2021, 66(4): 1167-1176.
doi: 10.1007/s11686-021-00383-7 pmid: 33840057 |
[17] |
Meira-Strejevitch CS, Pereira IS, Hippólito DDC, et al. Ocular toxoplasmosis associated with up-regulation of miR-155-5p/miR-29c-3p and down-regulation of miR-21-5p/miR-125b-5p[J]. Cytokine, 2020, 127: 154990.
doi: 10.1016/j.cyto.2020.154990 |
[18] |
Hadighi R, Heidari A, Fallah P, et al. Key plasma microRNAs variations in patients with Plasmodium vivax malaria in Iran[J]. Heliyon, 2022, 8(3): e09018.
doi: 10.1016/j.heliyon.2022.e09018 |
[19] |
Xu MJ, Zhou DH, Nisbet AJ, et al. Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii[J]. Parasit Vectors, 2013, 6: 154.
doi: 10.1186/1756-3305-6-154 |
[20] |
Silva VO, Maia MM, Torrecilhas AC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response[J]. Parasite Immunol, 2018, 40(9): e12571.
doi: 10.1111/pim.2018.40.issue-9 |
[21] |
Zou Y, Meng JX, Wei XY, et al. CircRNA and miRNA expression analysis in livers of mice with Toxoplasma gondii infection[J]. Front Cell Infect Microbiol, 2022, 12: 1037586.
doi: 10.3389/fcimb.2022.1037586 |
[22] |
Jia BY, Chang ZG, Wei XY, et al. Plasma microRNAs are promising novel biomarkers for the early detection of Toxoplasma gondii infection[J]. Parasit Vectors, 2014, 7: 433.
doi: 10.1186/1756-3305-7-433 |
[23] |
Cannella D, Brenier-Pinchart MP, Braun L, et al. MiR-146a and miR-155 delineate a microRNA fingerprint associated with Toxoplasma persistence in the host brain[J]. Cell Rep, 2014, 6(5): 928-937.
doi: 10.1016/j.celrep.2014.02.002 |
[24] |
Shen J, Xia WY, Khotskaya YB, et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2[J]. Nature, 2013, 497(7449): 383-387.
doi: 10.1038/nature12080 |
[25] |
Bhattacharyya SN, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress[J]. Cell, 2006, 125(6): 1111-1124.
doi: 10.1016/j.cell.2006.04.031 pmid: 16777601 |
[26] |
Sun XY, Xie HB, Zhang HX, et al. B7-H4 reduction induced by Toxoplasma gondii infection results in dysfunction of decidual dendritic cells by regulating the JAK2/STAT3 pathway[J]. Parasit Vectors, 2022, 15(1): 157.
doi: 10.1186/s13071-022-05263-1 |
[27] |
Cai YH, Chen H, Jin L, et al. STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage[J]. Parasit Vectors, 2013, 6: 356.
doi: 10.1186/1756-3305-6-356 |
[28] |
Jiang D, Wu SZ, Xu LQ, et al. Anti-infection roles of miR-155-5p packaged in exosomes secreted by dendritic cells infected with Toxoplasma gondii[J]. Parasit Vectors, 2022, 15(1): 3.
doi: 10.1186/s13071-021-05003-x pmid: 34986898 |
[29] |
Li SY, Yang J, Wang LY, et al. Expression profile of microRNAs in porcine alveolar macrophages after Toxoplasma gondii infection[J]. Parasit Vectors, 2019, 12(1): 65.
doi: 10.1186/s13071-019-3297-y |
[30] |
Cong W, Zhang XX, He JJ, et al. Global miRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection[J]. Oncotarget, 2017, 8(15): 25599-25611.
doi: 10.18632/oncotarget.16108 pmid: 28424428 |
[31] |
Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs[J]. Infect Agent Cancer, 2013, 8(1): 8.
doi: 10.1186/1750-9378-8-8 |
[32] |
Jung BK, Song H, Shin H, et al. Exosomal miRNA-21 from Toxoplasma gondii-infected microglial cells induces the growth of U87 glioma cells by inhibiting tumor suppressor genes[J]. Sci Rep, 2022, 12(1): 16450.
doi: 10.1038/s41598-022-20281-w |
[33] |
Wang L, Wang N, Zhao Y, et al. Toxoplasma gondii causes changes in the host’s expression of cancer‑associated miRNAs[J]. Oncol Lett, 2022, 23(5): 149.
doi: 10.3892/ol.2022.13267 pmid: 35350589 |
[34] |
Mantel PY, Hjelmqvist D, Walch M, et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria[J]. Nat Commun, 2016, 7: 12727.
doi: 10.1038/ncomms12727 |
[35] |
Hentzschel F, Hammerschmidt-Kamper C, Börner K, et al. AAV8 mediated in vivo overexpression of miR-155 enhances the protective capacity of genetically attenuated malarial parasites[J]. Mol Ther, 2014, 22(12): 2130-2141.
doi: S1525-0016(16)30260-X pmid: 25189739 |
[36] | Dkhil MA, Al-Quraishy SA, Abdel-Baki AA S, et al. Differential miRNA expression in the liver of BALB/c mice protected by vaccination during crisis of Plasmodium chabaudi blood-stage malaria[J]. Front Microbiol, 2017, 7: 2155. |
[37] |
Delić D, Dkhil M, Al-Quraishy S, et al. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria[J]. Parasitol Res, 2011, 108(5): 1111-1121.
doi: 10.1007/s00436-010-2152-z |
[38] |
Ikoma M, Gantt S, Casper C, et al. KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite[J]. PLoS One, 2018, 13(2): e0192659.
doi: 10.1371/journal.pone.0192659 |
[39] |
Martin-Alonso A, Cohen A, Quispe-Ricalde MA, et al. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways[J]. Sci Rep, 2018, 8(1): 11277.
doi: 10.1038/s41598-018-29721-y pmid: 30050092 |
[40] |
Liu WQ, Hao ZH, Huang LY, et al. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection[J]. Parasit Vectors, 2017, 10(1): 86.
doi: 10.1186/s13071-017-2027-6 |
[41] |
Wah ST, Hananantachai H, Patarapotikul J, et al. MicroRNA-27a and microRNA-146a SNP in cerebral malaria[J]. Mol Genet Genomic Med, 2019, 7(2): e00529.
doi: 10.1002/mgg3.2019.7.issue-2 |
[42] | Zhu LQ, Feng XY, Hu W, et al. Functions and roles of miRNA during the infection of Anopheles by Plasmodium[J]. Chin J Parasit Dis, 2020, 38(6): 742-748. (in Chinese) |
(朱凌倩, 冯欣宇, 胡薇, 等. miRNA在疟原虫感染按蚊过程中的功能及作用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 742-748.) | |
[43] |
Winter F, Edaye S, Hüttenhofer A, et al. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion[J]. Nucleic Acids Res, 2007, 35(20): 6953-6962.
doi: 10.1093/nar/gkm686 pmid: 17933784 |
[44] |
Lampe L, Jentzsch M, Kierszniowska S, et al. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development[J]. Nat Commun, 2019, 10(1): 5634.
doi: 10.1038/s41467-019-13627-y pmid: 31822677 |
[45] |
Jain S, Rana V, Shrinet J, et al. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi[J]. PLoS One, 2014, 9(5): e98402.
doi: 10.1371/journal.pone.0098402 |
[46] |
Chen XM, Splinter PL, O’Hara SP, et al. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection[J]. J Biol Chem, 2007, 282(39): 28929-28938.
doi: 10.1074/jbc.M702633200 |
[47] | Zhou R, Hu GK, Liu J, et al. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses[J]. PLoSPathog, 2009, 5(12): e1000681. |
[48] |
Feng RY, Niu ZW, Zhang XT, et al. Cryptosporidium parvum downregulates miR-181d in HCT-8 cells via the p50-dependent TLRs/NF-κB pathway[J]. Vet Parasitol, 2022, 305: 109710.
doi: 10.1016/j.vetpar.2022.109710 |
[49] |
Zhang GL, Zhang YJ, Niu ZW, et al. Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling[J]. Parasit Vectors, 2020, 13(1): 435.
doi: 10.1186/s13071-020-04312-x |
[50] |
Jiang H, Zhang X, Li X, et al. Cryptosporidium parvum regulates HCT-8 cell autophagy to facilitate survival via inhibiting miR-26a and promoting miR-30a expression[J]. Parasit Vect, 2022, 15(1): 470.
doi: 10.1186/s13071-022-05606-y |
[51] |
Gomes J, Salgueiro P, Inácio J, et al. Population diversity of Theileria annulata in Portugal[J]. Infect Genet Evol, 2016, 42: 14-19.
doi: 10.1016/j.meegid.2016.04.023 |
[52] |
Tajeri S, Haidar M, Sakura T, et al. Interaction between transforming Theileria parasites and their host bovine leukocytes[J]. Mol Microbiol, 2021, 115(5): 860-869.
doi: 10.1111/mmi.v115.5 |
[53] |
Gillan V, Simpson DM, Kinnaird J, et al. Characterisation of infection associated microRNA and protein cargo in extracellular vesicles of Theileria annulata infected leukocytes[J]. Cell Microbiol, 2019, 21(1): e12969.
doi: 10.1111/cmi.v21.1 |
[54] |
Haidar M, Tajeri S, Momeux L, et al. MiR-34c-3p regulates protein kinase A activity independent of cAMP by dicing prkar2b transcripts in Theileria annulata-infected leukocytes[J]. mSphere, 2023, 8(2): e0052622.
doi: 10.1128/msphere.00526-22 |
[55] |
Haidar M, Rchiad Z, Ansari HR, et al. MiR-126-5p by direct targeting of JNK-interacting protein-2 (JIP-2) plays a key role in Theileria-infected macrophage virulence[J]. PLoS Pathog, 2018, 14(3): e1006942.
doi: 10.1371/journal.ppat.1006942 |
[56] |
Marsolier J, Perichon M, DeBarry JD, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation[J]. Nature, 2015, 520(7547): 378-382.
doi: 10.1038/nature14044 |
[57] |
Yin F, Liu J, Gao S, et al. Exploring the TLR and NLR signaling pathway relevant molecules induced by the Theileria annulata infection in calves[J]. Parasitol Res, 2018, 117(10): 3269-3276.
doi: 10.1007/s00436-018-6026-0 |
[58] |
Zhang L, Chen LL, Zhang HT, et al. A comparative study of microRNAs in different stages of Eimeria tenella[J]. Front Vet Sci, 2022, 9: 954725.
doi: 10.3389/fvets.2022.954725 |
[59] |
Giles T, van Limbergen T, Sakkas P, et al. Diagnosis of sub-clinical coccidiosis in fast growing broiler chickens by microRNA profiling[J]. Genomics, 2020, 112(5): 3218-3225.
doi: S0888-7543(19)30741-4 pmid: 32198064 |
[60] |
Dkhil M, Abdel-Baki AA, Delić D, et al. Eimeria papillata: upregulation of specific miRNA-species in the mouse jejunum[J]. Exp Parasitol, 2011, 127(2): 581-586.
doi: 10.1016/j.exppara.2010.11.002 pmid: 21093440 |
[61] |
Chen XL, Wang ZJ, Chen YF, et al. Transcriptome analysis of differentially expressed circRNAs miRNAs and mRNAs during the challenge of coccidiosis[J]. Front Immunol, 2022, 13: 910860.
doi: 10.3389/fimmu.2022.910860 |
[62] |
Al-Quraishy S, Delic D, Sies H, et al. Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata infections[J]. Parasitol Res, 2011, 109(2): 387-394.
doi: 10.1007/s00436-011-2266-y pmid: 21301871 |
[1] | WU Jiahui, SONG Xiao, CHENG Peng, LIU Hongmei, GUO Xiuxia, WANG Haifang, GONG Maoqing. Identification and analysis of miRNA targeting CYP450s genes in mosquitoes [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 683-690. |
[2] | LIU Huaman, Bikash Giri, FANG Chuantao, ZHENG Yameng, WU Huixin, ZENG Minhao, LI Shan, CHENG Guofeng. Identification of gender associated m6A modified circRNA in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 552-558. |
[3] | QIN Peixi, ZHOU Caixian, LU Zhigang, ZHANG Biying, ZHOU Taoxun, HU Min. Identification of miRNAs in the infectious third stage larvae and parasitic female adult of Strongyloides stercoralis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 412-420. |
[4] | YANG Jinting, HUANG Xiaobin, WANG Yujuan, GUO Xianguo, ZHANG Xianzheng, YANG Huijuan, ZHENG Xiaoyan. Myotis fimbriatus ectoparasite infection and the morphological and phylogenetic analysis of Nycteribiidae in Dali, Yunnan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 452-458. |
[5] | WANG Feng, WU Fan, LI Linlin, HUANG Qingqing. Prevalence of parasitic infections in wild mice in Wuhu City, Anhui Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 516-519. |
[6] | XIE Yi, WANG Ying, WANG Xu, SHI Dandan, FU Meihua, LI Chunyang, WU Weiping, DAN Bazeli, LIAO Sa, ZHANG Kaige, DENG Xueying, GUAN Yayi. Investigation of fecal parasite pathogens in domestic dogs based on high-throughput sequencing [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 325-330. |
[7] | JIANG Tiange, ZENG Wenbo, LI Zhongqiu, ZHANG Yi. Research advances in the regulatory role of non-coding RNA in leishmaniasis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 92-97. |
[8] | ZHONG Shun-hu, SUN Yue, GUO Xiao-la, ZHENG Ya-dong, CHEN Yi-xia. Identification and bioinformatics analysis of differentially expressed miRNAs in splenic lymphocytes in Echinococcus multilocularis-infected mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 288-294. |
[9] | JIANG Li, ZHANG Yao-guang, LIU Hong-xia, WANG Zhen-yu, ZHU Min, WU Huan-yu. Establishment of multiplex PCR for malaria-transmitting vector surveillance [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 159-167. |
[10] | LIU Chuang, SI Wen-wen, ZHANG Yin, LIU Rong, LIU Yi, OUYANG Rui-zhuo, SUN Jun. A discussion on the broad-spectrum and potential mechanism of artemisinin and its derivatives [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 114-120. |
[11] | ZHANG Ya-lan, JIANG Tian-tian, HE Zhi-quan, DENG Yan, CHEN Wei-qi, ZHU Yan-kun, ZHANG Hong-wei, ZHAO Dong-yang. Differential expression of microRNA in the liver of mice infected by Capillaria hepatica [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 56-60. |
[12] | YIN Chang-zhu, LI Di, CAI Juan, XU Hong-ling, WANG Ling-jun, ZHENG Ming-hui, LIU Hui. Role of Toll-like receptor 7 in anti-infective immunity [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 99-103. |
[13] | HONG Yang, LIN Jiao-jiao. Research progress on proteomics in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 725-730. |
[14] | LU Fei, ZHUO Xun-hui, LU Shao-hong. Research progress on the interaction between host cell autophagy and apicomplexa protozoa infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 826-831. |
[15] | CAI Xuan, YANG Ya-ming, LI Ben-fu, YAN Xin-liu, PENG Jia, ZI Jin-rong, WU Fang-wei. Investigation on the prevalence of human parasitic infections in the ecoregion of southern part of Yunnan-Guangxi-Guangdong neighboring area, Yunnan Province in 2015 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 848-852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||