[1] | World Health Organization, Food and Agriculture Organization of the United Nations. Risk-based examples and approach for control of Trichinella spp. and Taenia saginata in meat[R]. Rome: WHO & FAO, 2020: 4-34. | [2] | Cheng G, Zhang ZF, Wang YX, et al. Trichinella spiralis-secreted products promote collagen capsule formation through TGF-β1/Smad3 pathway[J]. Int J Mol Sci, 2023, 24(19): 15003-15014. | [3] | Wu LQ, Yin WH, Wen JT, et al. Excretory/secretory products from Trichinella spiralis adult worms ameliorate myocardial infarction by inducing M2 macrophage polarization in a mouse model[J]. Parasit Vectors, 2023, 16(1): 362-378. | [4] | Wang J, Tang B, You XH, et al. Trichinella spiralis excretory/secretory products from adult worms inhibit NETosis and regulate the production of cytokines from neutrophils[J]. Parasit Vectors, 2023, 16(1): 374-386. | [5] | Ilic N, Bojic-Trbojevic Z, Lundstr?m-Stadelmann B, et al. Immunomodulatory components of Trichinella spiralis excretory-secretory products with lactose-binding specificity[J]. EXCLI J, 2022, 21: 793-813. | [6] | Zhou XX, Xie F, Wang L, et al. The function and clinical application of extracellular vesicles in innate immune regulation[J]. Cell Mol Immunol, 2020, 17(4): 323-334. | [7] | Ofir-Birin Y, Regev-Rudzki N. Extracellular vesicles in parasite survival[J]. Science, 2019, 363(6429): 817-818. | [8] | Sharon M, Regev-Rudzki N. Cell communication and protein degradation: all in one parasitic package[J]. J Extracell Vesicles, 2021, 10(9): e12116-e12120. | [9] | Kosanovi? M, Cvetkovi? J, Gruden-Movsesijan A, et al. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties[J]. Parasite Immunol, 2019, 41(10): e12665-e12669. | [10] | Gao X, Yang Y, Liu XL, et al. Extracellular vesicles from Trichinella spiralis: proteomic analysis and protective immunity[J]. PLoS Negl Trop Dis, 2022, 16(6): e0010528-e0010544. | [11] | Gao X, Yang Y, Liu L, et al. Isolation of exosomes from Trichinella spiralis muscle larvae and identification of small RNAs[J]. Chin J Zoonoses, 2020, 36(4): 261-266. (in Chinese) | | (高欣, 杨勇, 刘蕾, 等. 旋毛虫肌幼虫期外泌体的分离和小RNA鉴定[J]. 中国人兽共患病学报, 2020, 36(4): 261-266.) | [12] | Gao X, Yang Y, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis prevent colitis by inhibiting M1 macrophage polarization[J]. Acta Trop, 2021, 213: 105761-105768. | [13] | Yang Y, Liu L, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice[J]. Front Immunol, 2020, 11: 1174-1189. | [14] | Wu J, Liao Y, Li DH, et al. Extracellular vesicles derived from Trichinella Spiralis larvae promote the polarization of macrophages to M2b type and inhibit the activation of fibroblasts[J]. Front Immunol, 2022, 13: 974332-974342. | [15] | Wang RB, Zhang YH, Zhen JB, et al. Effects of exosomes derived from Trichinella spiralis infective larvae on intestinal epithelial barrier function[J]. VetRes, 2022, 53(1): 87-97. | [16] | Zhen JB, Zheng LS, Yang Y, et al. Comparison of collection methods of Trichinella spiralis bodies in various developmental stages[J]. Chin Vet Sci, 2022, 52(12): 1558-1567. (in Chinese) | | (甄晶博, 郑芦珊, 杨莹, 等. 旋毛虫不同虫期收集方法的比较[J]. 中国兽医科学, 2022, 52(12): 1558-1567.) | [17] | Zhao X, Shen LJ. Study of external culture and collection method of Trichinella spiralis newborn larvae in different ages[J]. J Pathog Biol, 2008, 3(9): 697-698, 725. (in Chinese) | | (赵雪, 申丽洁. 不同时龄旋毛虫新生幼虫的体外培养和收集方法研究[J]. 中国病原生物学杂志, 2008, 3(9): 697-698, 725.) | [18] | Kornilov R, Puhka M, Mannerstr?m B, et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum[J]. J Extracell Vesicles, 2018, 7(1): 1422674-1422687. | [19] | Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2): e12404-e12487. | [20] | Drurey C, Maizels RM. Helminth extracellular vesicles: interactions with the host immune system[J]. Mol Immunol, 2021, 137: 124-133. | [21] | Khosravi M, Mirsamadi ES, Mirjalali H, et al. Isolation and functions of extracellular vesicles derived from parasites: the promise of a new era in immunotherapy, vaccination, and diagnosis[J]. Int J Nanomedicine, 2020, 15: 2957-2969. | [22] | Hao HN, Cheng YK, Zhang R, et al. Immunoproteomic analysis on the soluble antigens of Trichinella spiralis newborn larvae[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 176-182, 191. (in Chinese) | | (郝会囡, 程永康, 张茹, 等. 旋毛虫新生幼虫可溶性抗原的免疫蛋白组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 176-182, 191.) | [23] | Ashour DS, Ibrahim FMK, Elshamy AM, et al. Trichinella spiralis-derived extracellular vesicles induce a protective immunity against larval challenge in mice[J]. Pathog Dis, 2022, 80(1): ftac040. | [24] | Li CY, Li C, Xu FY, et al. Identification of antigens in the Trichinella spiralis extracellular vesicles for serological detection of early stage infection in swine[J]. Parasit Vectors, 2023, 16(1): 387-398. | [25] | Liu YD, Liu JC, Wang N, et al. Quantitative label-free proteomic analysis of excretory-secretory proteins in different developmental stages of Trichinella spiralis[J]. Vet Res, 2024, 55(1): 4. | [26] | Li YE, Gu XB. A review on the biological functions of 14-3-3 in parasites[J]. J Sichuan Agric Univ, 2023, 41(6): 1134-1139. (in Chinese) | | (李艳娥, 古小彬. 寄生虫14-3-3蛋白的生物学功能研究进展[J]. 四川农业大学学报, 2023, 41(6): 1134-1139.) | [27] | Ji H, Wang JF, Guo JR, et al. Progress in the biological function of alpha-enolase[J]. Anim Nutr, 2016, 2(1): 12-17. | [28] | Landa A, Navarro L, Ochoa-Sánchez A, et al. Taenia solium and Taenia crassiceps: miRNomes of the larvae and effects of miR-10-5p and let-7-5p on murine peritoneal macrophages[J]. Biosci Rep, 2019, 39(11): BSR20190152. | [29] | Wang LQ, Liu TL, Chen GL, et al. Exosomal microRNA let-7-5p from Taenia pisiformis cysticercus prompted macrophage to M2 polarization through inhibiting the expression of C/EBP δ[J]. Microorganisms, 2021, 9(7): 1403-1414. |
|