[1] |
Liu RR, Huang D, Pan FF. A childhood eosinophilic meningitis case caused by Angiostrongylus cantonensis and review of literature[J]. Acta Parasitol Med Entomol Sin, 2023, 30(3): 175-179. (in Chinese)
|
|
(刘蕊蕊, 黄栋, 潘飞飞. 儿童广州管圆线虫致嗜酸性粒细胞性脑膜炎1例报告并文献复习[J]. 寄生虫与医学昆虫学报, 2023, 30(3): 175-179.)
|
[2] |
Yan L, Li Y, Yang SR, et al. Prevalence of Angiostrongylus cantonensis infection in snails in some southern of China[J]. Chin J Zoonoses, 2019, 35(11): 1063-1067. (in Chinese)
|
|
(闫琳, 李莹, 杨舒然, 等. 我国南方部分地区螺类感染广州管圆线虫的调查分析[J]. 中国人兽共患病学报, 2019, 35(11): 1063-1067.)
|
[3] |
Pan CW, Liang SH, Ling HB, et al. Experimental observation on the distribution of Angiostrongylus cantonensis in mice and histophathology of infected mice[J]. Chin J Parasit Dis Control, 2000, 13(1): 31-33. (in Chinese)
|
|
(潘长旺, 梁韶晖, 凌洪博, 等. 广州管圆线虫感染小鼠后在其体内分布及小鼠组织病理学实验观察[J]. 中国寄生虫病防治杂志, 2000, 13(1): 31-33.)
|
[4] |
Li ST, Yang F, Ji PY, et al. Eosinophil chemotactic chemokine profilings of the brain from permissive and non-permissive hosts infected with Angiostrongylus cantonenis[J]. Parasitol Res, 2014, 113(2): 517-525.
|
[5] |
Cheng DH, Li ZQ, Zeng WB, et al. Progress of researches on the role and mechanisms of non-coding RNA in Angiostrongylus cantonensis infection[J]. Chin J Schisto Control, 2023, 35(4): 407-412. (in Chinese)
|
|
(程东慧, 李中秋, 曾文博, 等. 非编码RNA在广州管圆线虫感染中作用和机制研究进展[J]. 中国血吸虫病防治杂志, 2023, 35(4): 407-412.)
|
[6] |
Lodde V, Floris M, Muroni MR, et al. Non-coding RNAs in malaria infection[J]. Wiley Interdiscip Rev RNA, 2022, 13(3): e1697.
|
[7] |
Gupta AK, Das S, Kamran M, et al. The pathogenicity and virulence of Leishmania: interplay of virulence factors with host defenses[J]. Virulence, 2022, 13(1): 903-935.
|
[8] |
Kataria P, Surela N, Chaudhary A, et al. miRNA: biological regulator in host-parasite interaction during malaria infection[J]. Int J Environ Res Public Health, 2022, 19(4): 2395.
|
[9] |
Menard KL, Haskins BE, Denkers EY. Impact of Toxoplasma gondii infection on host non-coding RNA responses[J]. Front Cell Infect Microbiol, 2019, 9: 132.
|
[10] |
Weng MX, Ma CG, Cao Q, et al. Selection and optimization of quality control organization for HE staining[J]. Chin J Clin Exp Pathol, 2023, 39(3): 378-379. (in Chinese)
|
|
(翁密霞, 马程功, 曹沁, 等. HE染色质控组织的选取及优化[J]. 临床与实验病理学杂志, 2023, 39(3): 378-379.)
|
[11] |
Chen SF, Zhou YQ, Chen YR, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
|
[12] |
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360.
doi: 10.1038/nmeth.3317
pmid: 25751142
|
[13] |
Anders S, Pyl PT, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169.
doi: 10.1093/bioinformatics/btu638
pmid: 25260700
|
[14] |
Roberts A, Trapnell C, Donaghey J, et al. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biol, 2011, 12(3): R22.
|
[15] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550.
|
[16] |
Liu RS. Study on the mechanism of luteolin and quercetin in the treatment of obesity based on network pharmacology and transcriptome sequencing[D]. Zhenjiang: Jiangsu University, 2022: 4-5. (in Chinese)
|
|
(刘若双. 基于网络药理学和转录组测序探讨木犀草素及槲皮素治疗肥胖的作用机制研究[D]. 镇江: 江苏大学, 2022: 4-5.)
|
[17] |
Wang HY, Radomska HS, Phelps MA, et al. Replication study: coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J]. eLife, 2020, 9: e56651.
|
[18] |
OuYang LS, Wei J, Wu ZD, et al. Differences of larval development and pathological changes in permissive and nonpermissive rodent hosts for Angiostrongylus cantonensis infection[J]. Parasitol Res, 2012, 111(4): 1547-1557.
pmid: 22777701
|
[19] |
Jhan KY, Chang PK, Cheng CJ, et al. Synaptic loss and progression in mice infected with Angiostrongylus cantonensis in the early stage[J]. J Neuroinflammation, 2022, 19(1): 85.
|
[20] |
Xiong HH, Zhou ZP, Wu ZD, et al. BALB/c mice infected with Angiostrongylus cantonensis: a new model for demyelination in the brain[J]. Anat Rec, 2021, 304(5): 1084-1093.
|
[21] |
Liu J, Xu YY, He XJ, et al. Study on the tolerance and adaptation of rats to Angiostrongylus cantonensis infection[J]. Parasitol Res, 2017, 116(7): 1937-1945.
doi: 10.1007/s00436-017-5472-4
pmid: 28493001
|
[22] |
Mo ZX, Guo JQ, She D, et al. Infection by the nematode Angiostrongylus cantonensis induces differential expression of miRNAs in mouse brain[J]. J Microbiol Immunol Infect, 2018, 51(1): 94-102.
|
[23] |
Zhou XM, Zhang JM, Liu JM, et al. MicroRNA miR-155-5p knockdown attenuates Angiostrongylus cantonensis-induced eosinophilic meningitis by downregulating MMP9 and TSLP proteins[J]. Int J Parasitol, 2021, 51(1): 13-22.
|
[24] |
Capece D, Verzella D, Flati I, et al. NF-κB: blending metabolism, immunity, and inflammation[J]. Trends Immunol, 2022, 43(9): 757-775.
doi: 10.1016/j.it.2022.07.004
pmid: 35965153
|
[25] |
Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways[J]. Arch Biochem Biophys, 2019, 670: 4-14.
doi: S0003-9861(18)30994-9
pmid: 30772258
|
[26] |
Tan YT, Lin JF, Li T, et al. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer[J]. Cancer Commun, 2021, 41(2): 109-120.
|
[27] |
Li H, Tang CL, Wang D. lncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating the miR-138-5p-p65 axis[J]. Biochem Cell Biol, 2020, 98(4): 525-536.
doi: 10.1139/bcb-2019-0281
pmid: 32114772
|
[28] |
Li YP, Li ZL, Nandakumar KS, et al. Human NCF190H variant promotes IL-23/IL-17-dependent mannan-induced psoriasis and psoriatic arthritis[J]. Antioxidants, 2023, 12(7): 1348.
|
[29] |
Hsu SM, Yang CH, Teng YT, et al. Suppression of the reactive oxygen response alleviates experimental autoimmune uveitis in mice[J]. Int J Mol Sci, 2020, 21(9): 3261.
|
[30] |
Li MY, Zhang WT, Zhang J, et al. Ncf1 governs immune niches in the lung to mediate pulmonary inflammation in mice[J]. Front Immunol, 2021, 12: 783944.
|