CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (2): 176-182.doi: 10.12140/j.issn.1000-7423.2023.02.008
• ORIGINAL ARTICLES • Previous Articles Next Articles
HAO Huinan(), CHENG Yongkang, ZHANG Ru, HAN Lulu, SONG Yanyan, LONG Shaorong, LIU Ruodan, ZHANG Xi, WANG Zhongquan, CUI Jing*(
)
Received:
2022-07-01
Revised:
2022-10-04
Online:
2023-04-26
Published:
2023-04-26
Contact:
CUI Jing
E-mail:hhn17839942348@163.com;cuij@zzu.edu.cn
Supported by:
CLC Number:
HAO Huinan, CHENG Yongkang, ZHANG Ru, HAN Lulu, SONG Yanyan, LONG Shaorong, LIU Ruodan, ZHANG Xi, WANG Zhongquan, CUI Jing. Immunoproteomic analysis on the soluble antigens of Trichinella spiralis newborn larvae[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 176-182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.02.008
Table 1
Specific primers of four T. spiralis newborn larval genes and internal control gene in qPCR assays
基因名称 Gene | UniProt登录号 UniProt accession no. | 引物序列 Primer sequence | 片段长度/bp Fragment length/bp |
---|---|---|---|
C型凝集素 C-type lectin | A0A0V1BZI5 | F:5'-AACAAAATCGAATGCCGAAG-3' | 150 |
R:5'-TAGTCACAATTCCACTCGCTT-3' | |||
钙网蛋白 Calreticulin | E5S2V2 | F:5'-CGCCCGATTTTATGAATTGTCTCGT-3' | 107 |
R:5'-CGCAATCAATCTTCTGTTCATGCTT-3' | |||
锌指蛋白 Zinc finger protein | A0A0V1BCH0 | F:5'-AGGCCACATATAATATTCGTT-3' | 113 |
R:5'-TGCTGCTACTTCTAATACAGG-3' | |||
丙酮酸激酶 Pyruvate kinase | A0A0V1B9L3 | F:5'-CAAAAGTCGATTTCCGCTGA-3' | 144 |
R:5'-CTCTTGGCGGTAATACGAAC-3' | |||
磷酸甘油醛脱氢酶 GAPDH | AF452239 | F:5'-GATGCTCCTATGTTGGTTATGGG-3' | 196 |
R:5'-GTCTTTTGGGTTGCCGTTGTAG-3' |
Fig. 1
SDS-PAGE (A) and Western blotting (B) analysis of T. spiralis newborn larval soluble antigens M: Protein marker; 1: Newborn larval soluble antigens; B: Western blotting of newborn larval soluble antigens recognized by infection serum; 2-3: Newborn larval and muscle larval soluble antigens recognized by T. spiralis-infected mouse serum, respectively; 4: Newborn larval soluble antigens not recognized by heathly mouse serum.
Table 2
Protein components of T. spiralis newborn larval soluble antigens identified by LC-MS/MS
UniProt登录号 UniProt accession no. | 蛋白质名称 Protein name | 信号肽 Signal peptide | 相对分子质量 Mr | 等电点 pI | 氨基酸数 No. amino acid | 覆盖范围/% Cover percent/% | 特异肽段数 No. unique peptide |
---|---|---|---|---|---|---|---|
A0A0V1BLM8 | Ras相关蛋白Rab-1A Ras-related protein Rab-1A | 无 | 22 700 | 5.69 | 204 | 10.29 | 2 |
A0A0V1BZI5 | C型凝集素结构域蛋白 C-type lectin domain-containing protein | 1~19 aaa | 24 700 | 8.19 | 208 | 2.88 | 3 |
A0A0V1BBS4 | Y-box因子样蛋白 Y-box factor-like protein | 无 | 35 500 | 9.58 | 321 | 11.21 | 3 |
E5SJF6 | 苹果酸脱氢酶 Malate dehydrogenase | 无 | 36 100 | 8.03 | 333 | 15.92 | 6 |
A0A0V1BCH0 | 锌指蛋白 Zinc finger protein | 无 | 38 500 | 8.60 | 331 | 8.76 | 3 |
A0A0V1BBS2 | 脊椎蛋白-1 Spondin-1 | 无 | 40 700 | 5.55 | 363 | 4.41 | 2 |
A0A0V1BXJ9 | 染色体结构域蛋白LHP1 Chromo domain protein LHP1 | 无 | 33 500 | 5.44 | 289 | 10.73 | 3 |
A0A0V1AX39 | 果糖二磷酸醛缩酶 Fructose-bisphosphate aldolase | 无 | 43 600 | 7.61 | 402 | 23.13 | 9 |
E5SGJ0 | 突触融合蛋白-16 Syntaxin-16 | 无 | 43 800 | 5.62 | 386 | 8.29 | 3 |
A0A0V1AUK5 | 原肌球调节蛋白 Tropomodulin | 无 | 46 000 | 4.79 | 407 | 28.50 | 11 |
E5S2V2 | 钙网蛋白 Calreticulin | 1~23 aaa | 47 200 | 4.78 | 406 | 15.76 | 6 |
E5SV78 | 柠檬酸合酶 Citrate synthase | 无 | 52 300 | 8.59 | 463 | 3.46 | 2 |
C9DTY3 | 14-3-3蛋白 14-3-3 protein | 无 | 28 200 | 4.94 | 250 | 16.00 | 4 |
A0A0V1B9L3 | 丙酮酸激酶 Pyruvate kinase | 无 | 70 300 | 7.20 | 636 | 23.27 | 15 |
[1] | Food and Agriculture Organization of the United Nations FAO/World Health Organization WHO. Multicriteria-based ranking for risk management of food-borne parasites[M]//Microbiological Risk Assessment. Rome: FAO/WHO. 2014. |
[2] | European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union one health 2019 zoonoses report[J]. EFSA J, 2021, 19(2): e06406. |
[3] |
Zhang XZ, Wang ZQ, Cui J. Epidemiology of trichinellosis in the People’s Republic of China during 2009—2020[J]. Acta Trop, 2022, 229: 106388.
doi: 10.1016/j.actatropica.2022.106388 |
[4] |
Zhang XZ, Yue WW, Bai SJ, et al. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection[J]. Acta Trop, 2022, 226: 106263.
doi: 10.1016/j.actatropica.2021.106263 |
[5] |
Liu RD, Cui J, Liu XL, et al. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae[J]. Acta Trop, 2015, 150: 79-86.
doi: 10.1016/j.actatropica.2015.07.002 |
[6] |
Lei JJ, Hu YY, Liu F, et al. Molecular cloning and characterization of a novel peptidase from Trichinella spiralis and protective immunity elicited by the peptidase in BALB/c mice[J]. Vet Res, 2020, 51(1): 111.
doi: 10.1186/s13567-020-00838-1 |
[7] |
Tang B, Li J, Li TT, et al. Vaccines as a strategy to control trichinellosis[J]. Front Microbiol, 2022; 13: 857786.
doi: 10.3389/fmicb.2022.857786 |
[8] |
Liu RD, Jiang P, Wen H, et al. Screening and characterization of early diagnostic antigens in excretory-secretory proteins from Trichinella spiralis intestinal infective larvae by immunoproteomics[J]. Parasitol Res, 2016, 115(2): 615-622.
doi: 10.1007/s00436-015-4779-2 |
[9] |
Sun GG, Wang ZQ, Liu CY, et al. Early serodiagnosis of trichinellosis by ELISA using excretory-secretory antigens of Trichinella spiralis adult worms[J]. Parasit Vectors, 2015, 8(1): 484.
doi: 10.1186/s13071-015-1094-9 |
[10] |
Sun GG, Song YY, Jiang P, et al. Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool[J]. PloS Negl Trop Dis, 2018, 12(5): e0006485.
doi: 10.1371/journal.pntd.0006485 |
[11] |
Hu CX, Jiang P, Yue X, et al. Molecular characterization of a Trichinella spiralis elastase-1 and its potential as a diagnostic antigen for trichinellosis[J]. Parasit Vectors, 2020, 13(1): 97.
doi: 10.1186/s13071-020-3981-y |
[12] |
Wang ZQ, Liu RD, Sun GG, et al. Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by sera of patients with early trichinellosis[J]. Front Microbiol, 2017, 8: 986.
doi: 10.3389/fmicb.2017.00986 |
[13] |
Ren HN, Liu RD, Song YY, et al. Label-free quantitative proteomic analysis of molting-related proteins of Trichinella spiralis intestinal infective larvae[J]. Vet Res, 2019, 50(1): 70.
doi: 10.1186/s13567-019-0689-0 |
[14] |
Liu RD, Qi X, Sun GG, et al. Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by early infection sera[J]. Vet Parasitol, 2016, 231: 43-46.
doi: 10.1016/j.vetpar.2016.10.008 |
[15] |
Ren HN, Zhuo TX, Bai SJ, et al. Proteomic analysis of hydrolytic proteases in excretory/secretory proteins from Trichinella spiralis intestinal infective larvae using zymography combined with shotgun LC-MS/MS approach[J]. Acta Trop, 2021, 216: 105825.
doi: 10.1016/j.actatropica.2021.105825 |
[16] |
Xu J, Liu RD, Bai SJ, et al. Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells[J]. PloS Negl Trop Dis, 2020, 14(4): e0008269.
doi: 10.1371/journal.pntd.0008269 |
[17] |
Hu YY, Zhang R, Yan SW, et al. Characterization of a novel cysteine protease in Trichinella spiralis and its role in larval intrusion, development and fecundity[J]. Vet Res, 2021, 52: 113.
doi: 10.1186/s13567-021-00983-1 |
[18] |
Liu JY, Zhang NZ, Li WH, et al. Proteomic analysis of differentially expressed proteins in the three developmental stages of Trichinella spiralis[J]. Vet Parasitol, 2016, 231: 32-38.
doi: S0304-4017(16)30229-1 pmid: 27357750 |
[19] |
Bruschi F, Solfanelli S, Binaghi RA. Trichinella spiralis: modifications of the cuticle of the newborn larva during passage through the lung[J]. Exp Parasitol, 1992, 75(1): 1-9.
pmid: 1639155 |
[20] |
Wang ZQ, Wang L, Cui J. Proteomic analysis of Trichinella spiralis proteins in intestinal epithelial cells after culture with their larvae by shotgun LC-MS/MS approach[J]. J Proteomics, 2012, 75(8): 2375-2383.
doi: 10.1016/j.jprot.2012.02.005 |
[21] |
Yang J, Pan W, Sun XM, et al. Immunoproteomic profile of Trichinella spiralis adult worm proteins recognized by early infection sera[J]. Parasit Vectors, 2015, 8: 20.
doi: 10.1186/s13071-015-0641-8 |
[22] |
Bruschi F, Gómez-Morales MA, Hill DE. International commission on trichinellosis: recommendations on the use of serological tests for the detection of Trichinella infection in animals and humans[J]. Food Waterborne Parasitol, 2019, 14: e00032.
doi: 10.1016/j.fawpar.2018.e00032 |
[23] |
Robinson MW, Hutchinson AT, Dalton JP, et al. Peroxiredoxin: a central player in immune modulation[J]. Parasite Immunol, 2010, 32(5): 305-313.
doi: 10.1111/j.1365-3024.2010.01201.x pmid: 20500659 |
[24] |
Zhong W, Li K, Cai Q, et al. Pyruvate kinase from Plasmodium falciparum: structural and kinetic insights into the allosteric mechanism[J]. Biochem Biophys Res Commun, 2020, 532(3): 370-376.
doi: 10.1016/j.bbrc.2020.08.048 |
[25] |
Yue WW, Yan SW, Zhang R, et al. Characterization of a novel pyruvate kinase from Trichinella spiralis and its participation in sugar metabolism, larval molting and development[J]. PLoS Negl Trop Dis, 2022, 16(10): e0010881.
doi: 10.1371/journal.pntd.0010881 |
[26] | Ngwa CJ, Farrukh A, Pradel G. Zinc finger proteins of Plasmodium falciparum[J]. Cell Microbiol, 2021, 23(12): e13387. |
[27] |
Shi W, Xue C, Su XZ, et al. The roles of galectins in parasitic infections[J]. Acta Trop, 2018, 177: 97-104.
doi: S0001-706X(16)30509-5 pmid: 28986248 |
[28] |
Zhao L, Shao S, Chen Y, et al. Trichinella spiralis calreticulin binds human complement C1q as an immune evasion strategy[J]. Front Immunol, 2017, 8: 636.
doi: 10.3389/fimmu.2017.00636 pmid: 28620388 |
[29] |
Bai SJ, Han LL, Liu RD, et al. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice[J]. PLoS Negl Trop Dis, 2022, 16(11): e0010929.
doi: 10.1371/journal.pntd.0010929 |
[30] |
Hao HN, Song YY, Ma KN, et al. A novel C-type lectin from Trichinella spiralis mediates larval invasion of host intestinal epithelial cells[J]. Vet Res, 2022, 53(1): 85.
doi: 10.1186/s13567-022-01104-2 |
[31] |
Das B, Ramnath, Dutta AK, Tandon V. Differential kinetics at PK/PEPCK branch point in the cestode, Raillietina echinobothrida[J]. Exp Parasitol, 2015, 153: 151-599.
doi: 10.1016/j.exppara.2015.03.023 |
[32] | Zhang YL, Wang Y, Bai X, et al. iTRAQ-based proteomics of excretory-secretory products of Trichinella spiralis and Trichinella pseudospiralis at the muscle larva stage[J]. Chin J Parasitol Parasit Dis, 2020, 38(1): 47-53. (in Chinese) |
(张雨璐, 王洋, 白雪, 等. 旋毛虫和伪旋毛虫肌幼虫时期排泄分泌产物iTRAQ法蛋白质组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(1): 47-53.) | |
[33] |
Fu BQ, Liu MY, Kapel CM, et al. Cloning and analysis of a novel cDNA from Trichinella spiralis encoding a protein with an FYVE zinc finger domain[J]. Vet Parasitol, 2005, 132(1/2): 27-30.
doi: 10.1016/j.vetpar.2005.05.059 |
[34] |
Li LG, Wang ZQ, Liu RD, et al. Trichinella spiralis: low vaccine potential of glutathione S-transferase against infections in mice[J]. Acta Trop, 2015, 146: 25-32.
doi: 10.1016/j.actatropica.2015.02.020 pmid: 25757368 |
[1] | ZHANG Xu, SUN Ximeng. Research progress on the immune evasion mechanism in Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 492-496. |
[2] | CAI Zi-han, CAO Ying, ZHU Feng-long, LI Qian, HE Yan-hong, YANG Yi-mei. Application of gold nanorod labeling in diagnosis of Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 652-658. |
[3] | WANG Guo-ying, CHEN Dan-dan, ZHENG Xue-li, LI Xiang-hui, ZHANG Hao, ZHANG Jun, TENG Tie-shan. Relationship between the infectivity of encysted larvae and the developmental stage of Trichinella spiralis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 785-788. |
[4] | Jian-da PANG, Yi-ning SONG, Xin-rui WANG, Ming-yuan LIU, Shu-min SUN. Proteomic analysis of cyst fluid of Cysticercus cellulosae [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(2): 144-149. |
[5] | Guo-ying WANG, Xiang-hui LI. Experimental observation of the development of Trichinella spiralis muscle larvae in mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(2): 235-237. |
[6] | Hui-hui LI, Wen-xin HE, Zhao-gen CAI, Da-peng QIU, Liang CHU, Xing-zhi CHEN, Qiang FANG, Hui XIA, Nan LI, Ning-ning CUI, Lan-song XU, Xiao-di YANG. Protective effects of adult-worm excretory-secretory protein of Trichinella spiralis against sepsis-induced acute liver injury and the mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(2): 99-104. |
[7] | Xiao-di YANG, Hui-hui LI, Zhi-yong TAO, Qiang FANG, Yang CHENG, Lan-song XU, Ren-min XUE, Yong CHEN, Hui XIA, Hui ZHANG, Hui JIANG, Tao LIU, Kun PENG, Xing-zhi CHEN. Effects of cystatins derived from two species of helminths on the release of nitric oxide and secretion of cytokines from murine peritoneal exudate cells [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(2): 110-114. |
[8] | Xiao-di YANG, Zhi-yong TAO, Yang CHENG, Qi WU, Xiao-li WANG, Di SONG, Lan-song XU, Ren-min XUE, Xue-lian CHANG, Hui Zhang, Rui WANG, Xing-zhi CHEN, Qiang FANG. Component analysis of excretory/secretory protein from Trichinella spiralis adult worm [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(1): 24-29. |
[9] | LUO Jing-mei1,CHENG Lu-yang2,GUAN Xiao-dong3,LI Dan1,YU Li1, DU Luan-ying1 *. LC-MS/MS Analysis on the Components of Excretory-secretory Protein of Trichinella spiralis Muscle Larvae [J]. , 2016, 34(1): 9-53-57. |
[10] | NIUTing-xian;PANFei-Fei;LIUMing-yuan;LUQiang;FUBao-quan;PascalBoireau. Detection of Anti-Trichinella spiralis Antibody by Indirect ELISA Using Recombinant Protein as Antigen [J]. , 2005, 23(3): 4-145. |
[11] | YUANLi-hong;FUBao-quan;LIUMing-yuan*;GaoFei;ZHANGYa-lan;WUXiu-ping;LINBen-fu;LILian-rui;LUQiang;CHENQi-jun;P.Boireau. Expression and Antigenicity Analysis of p46 000 Antigen from Newborn Larvae of Trichinella spiralis [J]. , 2005, 23(1): 8-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||