CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2022, Vol. 40 ›› Issue (1): 99-103.doi: 10.12140/j.issn.1000-7423.2022.01.015
• REVIEWS • Previous Articles Next Articles
YIN Chang-zhu(), LI Di, CAI Juan, XU Hong-ling, WANG Ling-jun, ZHENG Ming-hui, LIU Hui*(
)
Received:
2021-06-09
Revised:
2021-07-07
Online:
2022-02-28
Published:
2022-01-07
Contact:
LIU Hui
E-mail:1548427571@qq.com;liuhui6032@sina.com
Supported by:
CLC Number:
YIN Chang-zhu, LI Di, CAI Juan, XU Hong-ling, WANG Ling-jun, ZHENG Ming-hui, LIU Hui. Role of Toll-like receptor 7 in anti-infective immunity[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 99-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2022.01.015
[1] |
Pachathundikandi SK, Lind J, Tegtmeyer N, et al. Interplay of the gastric pathogen Helicobacter pylori with toll-like receptors[J]. Biomed Res Int, 2015, 2015: 192420.
doi: 10.1155/2015/192420 pmid: 25945326 |
[2] |
Du X, Poltorak A, Wei Y, et al. Three novel mammalian toll-like receptors: gene structure, expression, and evolution[J]. Eur Cytokine Netw, 2000, 11(3): 362-371.
pmid: 11022119 |
[3] |
Petes C, Odoardi N, Gee K. The toll for trafficking: toll-like receptor 7 delivery to the endosome[J]. Front Immunol, 2017, 8: 1075.
doi: 10.3389/fimmu.2017.01075 |
[4] |
Yin T, He S, Wang Y. Toll-like receptor 7/8 agonist, R848, exhibits antitumoral effects in a breast cancer model[J]. Mol Med Rep, 2015, 12(3): 3515-3520.
doi: 10.3892/mmr.2015.3885 |
[5] |
Chen H, Cheng ZY, Pan Y, et al. RASAL1 influences the proliferation and invasion of gastric cancer cells by regulating the RAS/ERK signaling pathway[J]. Hum Cell, 2014, 27(3): 103-110.
doi: 10.1007/s13577-014-0090-2 |
[6] | Dong GJ, Si CP. The role of IFN-α in the initiation and development of SLE[J]. J Jining Med Univ, 2016, 39(1): 6-11. (in Chinese) |
(董冠军, 司传平. IFN-α在SLE发生发展中的作用[J]. 济宁医学院学报, 2016, 39(1), 39: 6-11.) | |
[7] |
Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9[J]. Eur Cytokine Netw, 2000, 11(3): 372-378.
pmid: 11022120 |
[8] |
Celhar T, Pereira-Lopes S, Thornhill SI, et al. TLR7 and TLR9 ligands regulate antigen presentation by macrophages[J]. Int Immunol, 2016, 28(5): 223-232.
doi: 10.1093/intimm/dxv066 pmid: 26567289 |
[9] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820.
doi: 10.1016/j.cell.2010.01.022 pmid: 20303872 |
[10] | Wu H, Wu XM. Anti-HBV activity of TLR7 ligand Loxoribine in vitro[J]. Guangdong Med J, 2010, 31(3): 287-289. (in Chinese) |
(吴红, 吴晓蔓. TLR7配体Loxoribine抗乙型肝炎病毒的体外实验研究[J]. 广东医学, 2010, 31(3): 287-289.) | |
[11] | Goff PH, Hayashi T, He WQ, et al. Syntheti toll-like receptor 4 (TLR4) and TLR7 ligands work additively via MyD88 to induce protective antiviral immunity in mice[J]. J Virol, 2017, 91(19): e01050-17. |
[12] | Kim SJ, Chen Z, Essani AB, et al. Identification of a novel toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation[J]. Arthritis Rheumatol, 2016, 68(5): 1099-1110. |
[13] | Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: a review[J]. Scand J Immunol, 2019, 90(1): e12771. |
[14] | Wei W. Research of immune activation by HCV via TLR7 and function analyse for TLR7 cytoplasmic domain[D]. Shanghai: Second Military Medical University, 2011: 1. (in Chinese) |
(魏伟. TLR7在HCV感染过程中的免疫激活及胞内区功能研究[D]. 上海: 第二军医大学, 2011: 1.) | |
[15] |
Hofmann H, Vanwalscappel B, Bloch N, et al. TLR7/8 agonist induces a post-entry SAMHD1-independent block to HIV-1 infection of monocytes[J]. Retrovirology, 2016, 13(1): 83.
doi: 10.1186/s12977-016-0316-3 |
[16] |
Pavlovic M, Gross C, Chili C, et al. MAIT cells display a specific response to type 1 IFN underlying the adjuvant effect of TLR7/8 ligands[J]. Front Immunol, 2020, 11: 2097.
doi: 10.3389/fimmu.2020.02097 pmid: 33013883 |
[17] |
Caetano BC, Carmo BB, Melo MB, et al. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi[J]. J Immunol, 2011, 187(4): 1903-1911.
doi: 10.4049/jimmunol.1003911 |
[18] | Jiang YY, Xu YX, Yuan ZY, et al. Effect of toll-like receptor(TLR) 7 deficiencies on the in vivo immune response against Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2014, 32(3): 172-175. (in Chinese) |
(姜岩岩, 徐馀信, 袁忠英, 等. Toll样受体7敲除对日本血吸虫感染早期免疫应答的影响[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(3): 172-175.) | |
[19] |
Ordeix L, Montserrat-Sangrà S, Martínez-Orellana P, et al. Toll-like receptors 2, 4 and 7, interferon-gamma and interleukin 10, and programmed death ligand 1 transcripts in skin from dogs of different clinical stages of leishmaniosis[J]. Parasit Vectors, 2019, 12(1): 575.
doi: 10.1186/s13071-019-3827-7 pmid: 31806038 |
[20] |
Regli IB, Passelli K, Martínez-Salazar B, et al. TLR7 sensing by neutrophils is critical for the control of cutaneous leishmaniasis[J]. Cell Rep, 2020, 31(10): 107746.
doi: S2211-1247(20)30726-9 pmid: 32521271 |
[21] |
Gao W, Sun X, Li D, et al. Toll-like receptor 4, Toll-like receptor 7 and toll-like receptor 9 agonists enhance immune responses against blood-stage Plasmodium chabaudi infection in BALB/c mice[J]. Int Immunopharmacol, 2020, 89(pt b): 107096.
doi: 10.1016/j.intimp.2020.107096 |
[22] | Luo Q. Research on the effects and mechanism of TLR7 in invasive pulmonary aspergillosis[D]. Chongqing: Chongqing Medical University, 2020: 5-10. (in Chinese) |
(罗琴. Toll样受体7 (TLR7) 在侵袭性肺曲霉病中的作用及机制研究[D]. 重庆: 重庆医科大学, 2020: 5-10.) | |
[23] |
Szabo A, Magyarics Z, Pazmandi K, et al. TLR ligands upregulate RIG-Ⅰ expression in human plasmacytoid dendritic cells in a typeⅠ IFN-independent manner[J]. Immunol Cell Biol, 2014, 92(8): 671-678.
doi: 10.1038/icb.2014.38 |
[24] | de Marcken M, Dhaliwal K, Danielsen AC, et al. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection[J]. Sci Signal, 2019, 12(605): eaaw1347. |
[25] |
Thompson MR, Kaminski JJ, Kurt-Jones EA, et al. Pattern recognition receptors and the innate immune response to viral infection[J]. Viruses, 2011, 3(6): 920-940.
doi: 10.3390/v3060920 pmid: 21994762 |
[26] |
Hao WZ, Wang LY, Li ST. FKBP5 regulates RIG-I-mediated NF-κB activation and influenza a virus infection[J]. Viruses, 2020, 12(6): 672.
doi: 10.3390/v12060672 |
[27] | Long SQ, Shang ZL, Zuo L. The research of the polarization and the expression of TLR7 by Ana-1 cell infected with DEN2[J]. Chin J Immunol, 2013, 29(7): 675-680. (in Chinese) |
(龙世棋, 商正玲, 左丽. 登革2型病毒体外诱导Ana-1巨噬细胞极化及其TLR7表达的研究[J]. 中国免疫学杂志, 2013, 29(7): 675-680.) | |
[28] |
Posadas-Mondragón A, Aguilar-Faisal JL, Zuñiga G, et al. Association of genetic polymorphisms in TLR3, TLR4, TLR7, and TLR8 with the clinical forms of dengue in patients from Veracruz, Mexico[J]. Viruses, 2020, 12(11): 1230.
doi: 10.3390/v12111230 |
[29] |
Saha B, Kodys K, Adejumo A, et al. Circulating and exosome-packaged hepatitis C single-stranded RNA induce monocyte differentiation via TLR7/8 to polarized macrophages and fibrocytes[J]. J Immunol, 2017, 198(5): 1974-1984.
doi: 10.4049/jimmunol.1600797 |
[30] |
Zhang Y, El-Far M, Dupuy FP, et al. HCV RNA activates APCs via TLR7/TLR8 while virus selectively stimulates macrophages without inducing antiviral responses[J]. Sci Rep, 2016, 6: 29447.
doi: 10.1038/srep29447 |
[31] |
Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis[J]. Nature, 2007, 450(7173): 1253-1257.
doi: 10.1038/nature06421 |
[32] |
Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity[J]. Curr Opin Immunol, 2018, 50: 21-31.
doi: 10.1016/j.coi.2017.10.004 |
[33] |
Delgado MA, Deretic V. Toll-like receptors in control of immunological autophagy[J]. Cell Death Differ, 2009, 16(7): 976-983.
doi: 10.1038/cdd.2009.40 pmid: 19444282 |
[34] | Ma QM, Han L, Deng GC, et al. The research progress of autophagy in Mycobacterium tuberculosis infection[J]. Chin J Cell Biol, 2019, 41(9): 1797-1804. (in Chinese) |
(马沁梅, 韩璐, 邓光存, 等. 自噬在结核分枝杆菌感染中作用的研究进展[J]. 中国细胞生物学学报, 2019, 41(9): 1797-1804.) | |
[35] |
Franco LH, Fleuri AKA, Pellison NC, et al. Autophagy downstream of endosomal Toll-like receptor signaling in macrophages is a key mechanism for resistance to Leishmania major infection[J]. J Biol Chem, 2017, 292(32): 13087-13096.
doi: 10.1074/jbc.M117.780981 pmid: 28607148 |
[36] |
Zhou DJ, Kang KH, Spector SA. Production of interferon α by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy[J]. J Infect Dis, 2012, 205(8): 1258-1267.
doi: 10.1093/infdis/jis187 |
[37] |
Herath K, Kim HJ, Lee JH, et al. Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells[J]. J Ethnopharmacol, 2021, 265: 113340.
doi: 10.1016/j.jep.2020.113340 |
[38] |
Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells[J]. Nat Rev Immunol, 2015, 15(8): 471-485.
doi: 10.1038/nri3865 |
[39] | Wang Y, Li J, Yan W, et al. An active component containing pterodontic acid and pterodondiol isolated from Laggera pterodonta inhibits influenza a virus infection through the TLR7/MyD88/TRAF6/NF-κB signaling pathway[J]. Mol Med Rep, 2018, 18(1): 523-531. |
[40] |
Yang BY, Cheng YG, Liu Y, et al. Datura metel L. ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8-MyD88-NF-κB-NLRP3 inflammasome pathway[J]. Molecules, 2019, 24(11): 2157.
doi: 10.3390/molecules24112157 |
[41] |
Auderset F, Belnoue E, Mastelic-Gavillet B, et al. A TLR7/8 agonist-including DOEPC-based cationic liposome formulation mediates its adjuvanticity through the sustained recruitment of highly activated monocytes in a type I IFN-independent but NF-κB-dependent manner[J]. Front Immunol, 2020, 11: 580974.
doi: 10.3389/fimmu.2020.580974 |
[42] |
Yap XZ, Lundie RJ, Beeson JG, et al. Dendritic cell responses and function in malaria[J]. Front Immunol, 2019, 10: 357.
doi: 10.3389/fimmu.2019.00357 |
[43] |
Cao W, Manicassamy S, Tang H, et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway[J]. Nat Immunol, 2008, 9(10): 1157-1164.
doi: 10.1038/ni.1645 |
[44] | Mahmoud HA, Mahmoud HH, Solahaye KS, et al. Activation toll-like receptor7 (TLR7) responsiveness associated with mitogen-activated protein kinase (MAPK) activation in HIOEC cell line of oral squamous cell carcinoma[J]. J Dent (Shiraz), 2018, 19(3): 217-224. |
[45] |
Funk E, Kottilil S, Gilliam B, et al. Tickling the TLR7 to cure viral hepatitis[J]. J Transl Med, 2014, 12: 129.
doi: 10.1186/1479-5876-12-129 |
[46] |
Kawai T, Akira S. Innate immune recognition of viral infection[J]. Nat Immunol, 2006, 7(2): 131-137.
doi: 10.1038/ni1303 pmid: 16424890 |
[47] |
Zhu Y, Shao Y, Qu X, et al. Sodium ferulate protects against influenza virus infection by activation of the TLR7/9-MyD88-IRF7 signaling pathway and inhibition of the NF-κB signaling pathway[J]. Biochem Biophys Res Commun, 2019, 512(4): 793-798.
doi: 10.1016/j.bbrc.2019.03.113 |
[48] |
Mancuso G, Gambuzza M, Midiri A, et al. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells[J]. Nat Immunol, 2009, 10(6): 587-594.
doi: 10.1038/ni.1733 |
[49] | Xie CL, Liu CY, Lin Y, et al. Effects of IRF1 on polarization and antitumor function of M1 microphage[J]. Basic Clin Med, 2017, 37(2): 189-196. (in Chinese) |
(谢昌利, 刘翠颖, 林艳, 等. IRF1对M1巨噬细胞极化及其抗肿瘤效应的影响[J]. 基础医学与临床, 2017, 37(2): 189-196.) |
[1] | TAN Xiao, ZHU Qi, LIU Zhongqi, LI Jia, PENG Dingjin. Immunogenicity of Schistosoma japonicum Sj26gst mRNA vaccine candidate [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 546-551. |
[2] | ZHANG Xu, SUN Ximeng. Research progress on the immune evasion mechanism in Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 492-496. |
[3] | JIANG Tiange, ZENG Wenbo, LI Zhongqiu, ZHANG Yi. Research advances in the regulatory role of non-coding RNA in leishmaniasis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 92-97. |
[4] | LI Teng, SHEN Yu-juan, CUI Li-jun, LIU Hua, HU Yuan, JIANG Yan-yan, CAO Jian-ping. Long non-coding RNA NEAT1 involves in intestinal epithelial cell response against Cryptosporidium parvum infection via regulating IL-8 expression [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 487-492. |
[5] | HE Wei, ZHOU Bi-ying. Research progress on signal pathways related to host T cell immune response in helminth infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 223-227. |
[6] | YAN Jin, LI Dan-ni, FU Wei-xin. Immunomodulatory effects of natural killer cells on the CD4+ T cell subset in mice with cerebral malaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 332-338. |
[7] | CHEN Cai-song, ZHANG Yao-gang, WANG Zhi-xin, FAN Hai-ning. Advances in research on Nod-like receptor protein 3 inflammasome in parasitic diseases [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 390-394. |
[8] | Yu-jun SUN, Zhao-qi LI, Fang-li LV. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(6): 713-717. |
[9] | Yun-shan MOU, Lu-jie LI, Yin-juan WU, Xue-rong LI. Exploration of molecular mechanisms of artemisinin resistance in malaria parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(6): 636-642. |
[10] | Guang-yao MAO, Yun-hai GUO, Yi ZHANG, Ning XIAO. Research progress on genes related to ecological adaptability of Pomacea canaliculata [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(6): 666-672. |
[11] | Xin-xin ZHANG, Rui-lin CHU, Ying-hua XUAN, Yang CHENG. Research progress on proteins associated with Plasmodium vivax invasion of erythrocytes [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2018, 36(2): 161-165. |
[12] | SONG Xiu-mei, WANG Jing-wen*. Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection [J]. , 2016, 34(6): 6-508-512. |
[13] | XIA Dan,TENG Ping-ying,CHEN Xiao-guang,ZHOU Xiao-hong*. Diapause of Aedes albopictus and the Related Molecular Mechanisms [J]. , 2016, 34(3): 18-282-289. |
[14] | Shadike Apaer, Tuerhongjiang Tuxun, WEN Hao*. Research Development on the Protective Effect of Parasitic Infection against Rheumatoid Arthritis [J]. , 2016, 34(1): 12-75-79. |
[15] | SHEN Ji-long1*,WANG Lin2. Genotypes and Main Effectors of Toxoplasma gondii and Their Pathogenic Mechanisms [J]. , 2015, 33(6): 7-429-435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||