CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2022, Vol. 40 ›› Issue (1): 20-27.doi: 10.12140/j.issn.1000-7423.2022.01.003
• EXPERT VIEWPOINTS • Previous Articles Next Articles
JING Wen-wen(), CHENG Xun-jia*(
)
Received:
2021-12-07
Revised:
2022-01-05
Online:
2022-02-28
Published:
2022-02-11
Contact:
CHENG Xun-jia
E-mail:wenwenjing@fudan.edu.cn;xjcheng@shmu.edu.cn
Supported by:
CLC Number:
JING Wen-wen, CHENG Xun-jia. Application and prospect of multidisciplinary new detection technology in the diagnosis of parasite infections[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 20-27.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2022.01.003
[1] | Feng J, Zhang L, Tu H, et al. From elimination to post-elimination: characteristics, challenges and re-transmission preventing strategy of imported malaria in China[J]. Chin Trop Med, 2021, 21(1): 5-10. (in Chinese) |
(丰俊, 张丽, 涂宏, 等. 从消除到消除后: 中国输入性疟疾的疫情特征、挑战及防止再传播策略[J]. 中国热带医学, 2021, 21(1): 5-10.) | |
[2] |
Zhou XN. China declared malaria-free: a milestone in the world malaria eradication and Chinese public health[J]. Infect Dis Poverty, 2021, 10: 98.
doi: 10.1186/s40249-021-00882-9 |
[3] | World Health Organization. World malaria report 2021[R]. Geneva: WHO, 2021. |
[4] |
Muhseen ZT, Hameed AR, Al-Bhadly O, et al. Natural products for treatment of Plasmodium falciparum malaria: an integrated computational approach[J]. Comput Biol Med, 2021, 134: 104415.
doi: 10.1016/j.compbiomed.2021.104415 pmid: 33910128 |
[5] |
Punsawad C, Phasuk N, Bunratsami S, et al. Prevalence of intestinal parasitic infection and associated risk factors among village health volunteers in rural communities of southern Thailand[J]. BMC Public Health, 2017, 17(1): 564.
doi: 10.1186/s12889-017-4486-2 |
[6] | Kesete Y, Tesfahiwet H, Fessehaye G, et al. Assessment of prevalence and risk factors for intestinal parasitosis, malnutrition and anemia among school children in Ghindae area, Eritrea[J]. J Trop Med, 2020: 4230260. |
[7] |
Kalinga AK, Mgata S, Kavishe RA, et al. Implementation of external quality assessment of microscopy for improved parasite detection and confirmatory diagnosis of malaria in Tanzanian military health facilities[J]. BMC Res Notes, 2020, 13(1): 447.
doi: 10.1186/s13104-020-05290-0 pmid: 32948227 |
[8] |
Lo NC, Gupta R, Addiss DG, et al. Comparison of World Health Organization and demographic and health surveys data to estimate sub-national deworming coverage in pre-school aged children[J]. PLoS Negl Trop Dis, 2020, 14(8): e0008551.
doi: 10.1371/journal.pntd.0008551 |
[9] | Cen QF, Sun ML, Bi SS. Development of automatic blood smear maker and experiment[J]. Chin Med Devices, 2018, 33(10): 41-44, 53. (in Chinese) |
(岑启锋, 孙明磊, 毕树生. 自动血涂片制备机的研制与实验[J]. 中国医疗设备, 2018, 33(10): 41-44, 53.) | |
[10] |
Wong LW, Ong KS, Goh CBS, et al. Extremely low prevalence in soil-transmitted helminth infections among a multi-ethnic community in Segamat, Malaysia[J]. J Parasit Dis, 2021, 45(2): 313-318.
doi: 10.1007/s12639-020-01334-1 |
[11] |
Bechir M, Schelling E, Hamit MA, et al. Parasitic infections, anemia and malnutrition among rural settled and mobile pastoralist mothers and their children in Chad[J]. EcoHealth, 2012, 9(2): 122-131.
doi: 10.1007/s10393-011-0727-5 pmid: 22160444 |
[12] |
Punsawad C, Phasuk N, Thongtup K, et al. Prevalence of parasitic contamination of raw vegetables in Nakhon Si Thammarat Province, southern Thailand[J]. BMC Public Health, 2019, 19(1): 34.
doi: 10.1186/s12889-018-6358-9 |
[13] |
Oliveira WJ, Magalhães FDC, Elias AMS, et al. Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: Saline gradient, Helmintex, Kato-Katz and rapid urine test[J]. PLoS Negl Trop Dis, 2018, 12(2): e0006232.
doi: 10.1371/journal.pntd.0006232 |
[14] |
Bosch F, Palmeirim MS, Ali SM, et al. Diagnosis of soil-transmitted helminths using the Kato-Katz technique: what is the influence of stirring, storage time and storage temperature on stool sample egg counts?[J]. PLoS Negl Trop Dis, 2021, 15(1): e0009032.
doi: 10.1371/journal.pntd.0009032 |
[15] |
Li JQ, Wang ZZ, Karim MR, et al. Detection of human intestinal protozoan parasites in vegetables and fruits: a review[J]. Parasite Vector, 2020, 13(1): 380.
doi: 10.1186/s13071-020-04255-3 |
[16] |
Manser M, Granlund M, Edwards H, et al. Detection of Cryptosporidium and Giardia in clinical laboratories in Europe: a comparative study[J]. Clin Microbiol Infect, 2014, 20(1): O65-O71.
doi: 10.1111/1469-0691.12297 |
[17] |
Resende SD, Magalhães FC, Rodrigues-Oliveira JL, et al. Modulation of allergic reactivity in humans is dependent on Schistosoma mansoni parasite burden, low levels of IL-33 or TNF-α and high levels of IL-10 in serum[J]. Front Immunol, 2018, 9: 3158.
doi: 10.3389/fimmu.2018.03158 pmid: 30713536 |
[18] |
Andrade HM, Toledo VPCP, Pinheiro MB, et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil[J]. Vet Parasitol, 2011, 181(2/3/4): 83-90.
doi: 10.1016/j.vetpar.2011.05.009 |
[19] |
Utzinger J, Becker SL, van Lieshout L, et al. New diagnostic tools in schistosomiasis[J]. Clin Microbiol Infect, 2015, 21(6): 529-542.
doi: 10.1016/j.cmi.2015.03.014 |
[20] | Bowman DD. Introduction[M]//Georgis’ Parasitology for veterinarians. Amsterdam: Elsevier, 2021: 1-9. |
[21] | Kalogeropoulos D, Sakkas H, Mohammed B, et al. Ocular toxoplasmosis: a review of the current diagnostic and therapeutic approaches[J]. Int Ophthalmol, 2021: 1-27. |
[22] | Jayasingh A, Rompicherla V, Radha RKN, et al. Comparative study of peripheral blood smear, rapid antigen detection, ELISA and PCR methods for diagnosis of malaria in a tertiary care centre[J]. J Clin Diagn Res, 2019, 13(1): DC8-DC11. |
[23] |
Roellig DM, Yoder JS, Madison-Antenucci S, et al. Community laboratory testing for Cryptosporidium: multicenter study retesting public health surveillance stool samples positive for Cryptosporidium by rapid cartridge assay with direct fluorescent antibody testing[J]. PLoS One, 2017, 12(1): e0169915.
doi: 10.1371/journal.pone.0169915 |
[24] |
Checkley W, White AC, Jaganath D, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium[J]. Lancet Infect Dis, 2015, 15(1): 85-94.
doi: 10.1016/S1473-3099(14)70772-8 pmid: 25278220 |
[25] |
Van den Bossche D, Cnops L, Verschueren J, et al. Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in feces[J]. J Microbiol Methods, 2015, 110: 78-84.
doi: 10.1016/j.mimet.2015.01.016 pmid: 25615719 |
[26] |
Oliveira R, Azevedo AS, Mendes L. Application of nucleic acid mimics in fluorescence in situ hybridization[J]. Methods Mol Biol, 2021, 2246: 69-86.
doi: 10.1007/978-1-0716-1115-9_5 pmid: 33576983 |
[27] | Chen YI, Sripati MP, Nguyen TD, et al. Recent developments in the characterization of nucleic acid hybridization kinetics[J]. Curr Opin Biomed Eng, 2021, 19: 100305. |
[28] |
Neves ES, Espíndola OM, Curi A, et al. PCR-based diagnosis is not always useful in the acute acquired toxoplasmosis in immunocompetent individuals[J]. Parasitol Res, 2021, 120(2): 763-767.
doi: 10.1007/s00436-020-07022-6 |
[29] |
Nadeem MF, Khattak AA, Zeeshan N, et al. Assessment of microscopic detection of malaria with nested polymerase chain reaction in war-torn federally administered tribal areas of Pakistan[J]. Acta Parasitol, 2021, 66(4): 1186-1192.
doi: 10.1007/s11686-021-00374-8 |
[30] |
Biswas PG, Ohari Y, Mohanta UK, et al. Development of a multiplex PCR method for discriminating between Heterakis gallinarum, H. beramporia, and H. indica parasites of poultry[J]. Vet Parasitol, 2021, 295: 109463.
doi: 10.1016/j.vetpar.2021.109463 pmid: 34023591 |
[31] |
Dilks CM, Hahnel SR, Sheng Q, et al. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles[J]. Int J Parasitol Drugs Drug Resist, 2020, 14: 28-36.
doi: 10.1016/j.ijpddr.2020.08.003 |
[32] | Pandey SC, Gangola S, Kumar S, et al. DNA microarray analysis of Leishmania parasite: strengths and limitations[M]//Pathogenesis, treatment and prevention of leishmaniasis. Amsterdam: Elsevier, 2021: 85-101. |
[33] |
Massolo A, Gerber A, Umhang G, et al. Droplet digital PCR as a sensitive tool to assess exposure pressure from Echinococcus multilocularis in intermediate hosts[J]. Acta Trop, 2021, 223: 106078.
doi: 10.1016/j.actatropica.2021.106078 |
[34] |
Madison-Antenucci S, Relich RF, Doyle L, et al. Multicenter evaluation of BD max enteric parasite Real-Time PCR assay for detection of Giardia duodenalis, Cryptosporidium hominis, Cryptosporidium parvum, and Entamoeba histolytica[J]. J Clin Microbiol, 2016, 54(11): 2681-2688.
pmid: 27535690 |
[35] |
Zhan Z, Guo J, Xiao Y, et al. Comparison of BioFire FilmArray gastrointestinal panel versus Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for diarrheal pathogen detection in China[J]. Int J Infect Dis, 2020, 99: 414-420.
doi: 10.1016/j.ijid.2020.08.020 |
[36] | Leal SM Jr, Popowitch EB, Levinson KJ, et al. Quantitative thresholds enable accurate identification of Clostridium difficile infection by the luminex xTAG gastrointestinal pathogen panel[J]. J Clin Microbiol, 2018, 56(6): e01885-17. |
[37] | Kellner T, Parsons B, Chui LD, et al. Comparative evaluation of enteric bacterial culture and a molecular multiplex syndromic panel in children with acute gastroenteritis[J]. J Clin Microbiol, 2019, 57(6): e00205-19. |
[38] |
Ken Dror S, Pavlotzky E, Barak M. Evaluation of the NanoCHIP® gastrointestinal panel (GIP) test for simultaneous detection of parasitic and bacterial enteric pathogens in fecal specimens[J]. PLoS One, 2016, 11(7): e0159440.
doi: 10.1371/journal.pone.0159440 |
[39] |
Momčilović S, Cantacessi C, Arsić-Arsenijević V, et al. Rapid diagnosis of parasitic diseases: current scenario and future needs[J]. Clin Microbiol Infect, 2019, 25(3): 290-309.
doi: 10.1016/j.cmi.2018.04.028 |
[40] | Kubiak J, Davidson E, Soave R, et al. Colonization with gastrointestinal pathogens prior to hematopoietic cell transplantation and associated clinical implications[J]. Transplant Cell Ther, 2021, 27(6): 499.e1-499.e6. |
[41] |
Dirani G, Zannoli S, Paesini E, et al. EasyscreenTM enteric protozoa assay for the detection of intestinal parasites: a retrospective bi-center study[J]. J Parasitol, 2019, 105(1): 58-63.
doi: 10.1645/18-52 |
[42] |
Abbasi I, Kirstein OD, Hailu A, et al. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples[J]. Acta Trop, 2016, 162, 20-26.
doi: 10.1016/j.actatropica.2016.06.009 |
[43] |
Xu J, Rong R, Zhang H, et al. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP)[J]. Int J Parasitol, 2020, 40(3): 327-331.
doi: 10.1016/j.ijpara.2009.08.010 |
[44] |
Chen M, Ai L, Zhang R, et al. Sensitive and rapid detection of Paragonimus westermani infection in humans and animals by loop-mediated isothermal amplification (LAMP)[J]. Parasitol Res, 2011, 108(5): 1193-1198.
doi: 10.1007/s00436-010-2162-x pmid: 21107864 |
[45] |
Besuschio SA, Picado A, Muñoz-Calderón A, et al. Trypanosoma cruzi loop-mediated isothermal amplification (Trypanosoma cruzi Loopamp) kit for detection of congenital, acute and Chagas disease reactivation[J]. PLoS Negl Trop Dis, 2020, 14(8): e0008402.
doi: 10.1371/journal.pntd.0008402 |
[46] |
Cammilleri G, Ferrantelli V, Pulvirenti A, et al. Validation of a commercial loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Anisakis spp. DNA in processed fish products[J]. Foods, 2020, 9(1): 92.
doi: 10.3390/foods9010092 |
[47] |
Zhang L, Gleason C. Loop-mediated isothermal amplification for the diagnostic detection of Meloidogyne chitwoodi and M. fallax[J]. Plant Dis, 2019, 103(1): 12-18.
doi: 10.1094/PDIS-01-18-0093-RE pmid: 30358508 |
[48] |
Kato Y, Yanagisawa T, Nakai M, et al. Direct and sensitive detection of a microsporidian parasite of bumblebees using loop-mediated isothermal amplification (LAMP)[J]. Sci Rep, 2020, 10(1): 1118.
doi: 10.1038/s41598-020-57909-8 |
[49] |
Sukphattanaudomchoke C, Siripattanapipong S, Thita T, et al. Simplified closed tube loop mediated isothermal amplification (LAMP) assay for visual diagnosis of Leishmania infection[J]. Acta Trop, 2020, 212: 105651.
doi: S0001-706X(20)31155-4 pmid: 32763231 |
[50] |
Crannell Z, Castellanos-Gonzalez A, Nair G, et al. Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa[J]. Anal Chem, 2016, 88(3): 1610-1616.
doi: 10.1021/acs.analchem.5b03267 pmid: 26669715 |
[51] | Lalremruata A, Nguyen T, McCall M, et al. Recombinase polymerase amplification and lateral flow assay for ultrasensitive detection of low-density Plasmodium falciparum infection from controlled human malaria infection studies and naturally acquired infections[J]. J Clin Microbiol, 2020, 58(5): e01879-19. |
[52] | Khan M, Faisal K, Chowdhury R, et al. Evaluation of molecular assays to detect Leishmania donovani in Phlebotomus argentipes fed on post-kala-azar dermal leishmaniasis patients, Parasite Vector, 2021, 14(1): 465. |
[53] | Suzuki CTN, Gomes JF, Falcão AX, et al. Automated diagnosis of human intestinal parasites using optical microscopy images [C]//2013 IEEE 10th International Symposium on Biomedical Imaging. San Francisco: IEEE, 2013: 460-463. |
[54] |
Chen P, Sun W, He Y. Comparison of metagenomic next-generation sequencing technology, culture and GeneXpert MTB/RIF assay in the diagnosis of tuberculosis[J]. J Thorac Dis, 2020, 12(8): 4014-4024.
doi: 10.21037/jtd |
[55] |
Mor SM, Ascolillo LR, Nakato R, et al. Expectoration of Cryptosporidium parasites in sputum of human immunodeficiency virus-positive and-negative adults[J]. Am J Trop Med Hyg, 2018, 98(4): 1086-1090.
doi: 10.4269/ajtmh.17-0741 |
[56] |
Wang C, Li A, Shi Q, et al. Metagenomic next-generation sequencing clinches diagnosis of leishmaniasis[J]. Lancet, 2021, 397(10280): 1213.
doi: 10.1016/S0140-6736(21)00352-4 |
[57] |
Wilson MR, O’Donovan BD, Gelfand JM, et al. Chronic meningitis investigated via metagenomic next-generation sequencing[J]. JAMA Neurol, 2018, 75(8): 947-955.
doi: 10.1001/jamaneurol.2018.0463 |
[58] | Li R, Wang X, Sun Y, et al. Application of metagenomic next-generation sequencing in the diagnosis of imported malaria[J]. Int J Infect Dis, 2020, 101: 425. |
[59] |
Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia[J]. PLoS One, 2020, 15(6): e0232610.
doi: 10.1371/journal.pone.0232610 |
[60] |
Abedini-Nassab R. Nanotechnology and nanopore sequencing[J]. Recent Pat Nanotechnol, 2017, 11(1): 34-41.
doi: 10.2174/1872210510666160602152913 pmid: 27262629 |
[61] |
Wen CY, Zhang SL. Fundamentals and potentials of solid-state nanopores: a review[J]. J Phys D Appl Phys, 2020, 54(2): 023001.
doi: 10.1088/1361-6463/ababce |
[62] |
Wen C, Zeng S, Zhang Z, et al. Group behavior of nanoparticles translocating multiple nanopores[J]. Anal Chem, 2018, 90(22): 13483-13490.
doi: 10.1021/acs.analchem.8b03408 |
[63] |
Tang XM, Sui G, Cai Q, et al. Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries[J]. J Mater Chem A, 2016, 4(6): 2082-2088.
doi: 10.1039/C5TA10073A |
[64] |
Yao Y, Wen CY, Pham NH, et al. On induced surface charge in solid-state nanopores[J]. Langmuir, 2020, 36(30): 8874-8882.
doi: 10.1021/acs.langmuir.0c01189 pmid: 32646217 |
[65] |
Zeng SS, Wen CY, Solomon P, et al. Rectification of protein translocation in truncated pyramidal nanopores[J]. Nat Nanotechnol, 2019, 14(11): 1056-1062.
doi: 10.1038/s41565-019-0549-0 |
[66] | Liu ZW, Wang YF, Deng T, et al. Solid-state nanopore-based DNA sequencing technology[J]. J Nanomater, 2016, 2016: 1-13. |
[67] |
He L, Tessier DR, Briggs K, et al. Digital immunoassay for biomarker concentration quantification using solid-state nanopores[J]. Nat Commun, 2021, 12(1): 5348.
doi: 10.1038/s41467-021-25566-8 |
[68] |
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
doi: 10.1038/nprot.2013.143 |
[69] |
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096.
doi: 10.1126/science.1258096 |
[70] |
Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nat Protoc, 2019, 14(10): 2986-3012.
doi: 10.1038/s41596-019-0210-2 pmid: 31548639 |
[71] |
Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat Biomed Eng, 2019, 3(6): 427-437.
doi: 10.1038/s41551-019-0371-x pmid: 31097816 |
[72] |
Lee RA, Puig H, Nguyen PQ, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proc Natl Acad Sci USA, 2020, 117(41): 25722-25731.
doi: 10.1073/pnas.2010196117 |
[73] |
Gustafsson MG. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc Natl Acad Sci USA, 2005, 102(37): 13081-13086.
doi: 10.1073/pnas.0406877102 |
[74] | Górriz M, Aparicio A, Raventós B, et al. Leishmaniasis parasite segmentation and classification using deep learning [C]//Articulated Motion and Deformable Objects. Palma de Mallorca: Springer, Cham, 2018: 53-62. |
[75] |
Jo Y, Park S, Jung J, et al. Holographic deep learning for rapid optical screening of Anthrax spores[J]. Sci Adv, 2017, 3(8): e1700606.
doi: 10.1126/sciadv.1700606 |
[76] |
Kraus F, Miron E, Demmerle J, et al. Quantitative 3D structured illumination microscopy of nuclear structures[J]. Nat Protoc, 2017, 12(5): 1011-1028.
doi: 10.1038/nprot.2017.020 |
[77] |
Rajaraman S, Antani SK, Poostchi M, et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images[J]. PeerJ, 2018, 6: e4568.
doi: 10.7717/peerj.4568 |
[78] |
Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710.
doi: 10.1038/s41586-019-1923-7 |
[79] |
Yu H, Jing WW, Iriya R, et al. Phenotypic antimicrobial susceptibility testing with deep learning video microscopy[J]. Anal Chem, 2018, 90(10): 6314-6322.
doi: 10.1021/acs.analchem.8b01128 |
[80] |
Akama K, Iwanaga N, Yamawaki K, et al. Wash-and amplification-free digital immunoassay based on single-particle motion analysis[J]. ACS Nano, 2019, 13(11): 13116-13126.
doi: 10.1021/acsnano.9b05917 |
[81] |
Rissin DM, Kan CW, Campbell TG, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nat Biotechnol, 2010, 28: 595-599.
doi: 10.1038/nbt.1641 pmid: 20495550 |
[82] |
Fischer SK, Joyce A, Spengler M, et al. Emerging technologies to increase ligand binding assay sensitivity[J]. AAPS J, 2015, 17: 93-101.
doi: 10.1208/s12248-014-9682-8 |
[83] |
Zhu L, Li G, Sun S, et al. Digital immunoassay of a prostate-specific antigen using gold nanorods and magnetic nanoparticles[J]. RSC Adv, 2017, 7: 27595-27602.
doi: 10.1039/C7RA00575J |
[84] |
Jing W, Wang Y, Yang Y, et al. Time-resolved digital immunoassay for rapid and sensitive quantitation of procalcitonin with plasmonic imaging[J]. ACS Nano, 2019, 13(8): 8609-8617.
doi: 10.1021/acsnano.9b02771 |
[1] | LI Jing, YANG Shufeng, GAO Wenwei, LIU Qing, ZHU Xingquan, ZHENG Wenbin. Infection status and genotype identification of Toxoplasma gondii in pigs in Jinzhong City, Shanxi Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(3): 367-371. |
[2] | XU Yin, LIU Ting, XU Hui, ZENG Xiaojun, LAN Weiming, GONG Zhihong, DAI Kunjiao, QIU Tingting, HAO Xian, XIE Shuying. Establishment and application of PCR-CRISPR/Cas12a-based detection method for Clonorchis sinensis metacercaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 421-426. |
[3] | LIU Yi, CAI Yu-chun, CHEN Shao-hong, CHEN Jia-xu. Advances in research on the roles of natural killer T cells in immune responses to parasitic infections [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 477-481. |
[4] | Qi-pei WEI, Yong-fen QI, Yan-rong YU. Effects of endoplasmic reticulum stress in parasite infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(6): 617-622. |
[5] | ZHANG Dong-mei*. Research Development of Diagnostic Techniques for Tropical Infectious Diseases [J]. , 2015, 33(6): 9-443-449. |
[6] | SUN Rui,WU Zhong-dao. The Immunopathology Mechanisms of Matrix Metalloproteinases in Brain Infection Induced by Parasites [J]. , 2010, 28(6): 14-468-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||