中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (5): 619-624.doi: 10.12140/j.issn.1000-7423.2023.05.014
梁柯嘉1(), 刘聪2, 李彦霖1, 李小鸽1, 刘彦1, 李贞魁1,*(
)
收稿日期:
2023-03-21
修回日期:
2023-05-29
出版日期:
2023-10-30
发布日期:
2023-11-06
通讯作者:
*李贞魁(1990-),男,博士,副教授,从事疟原虫的传播阻断研究。E-mail:作者简介:
梁柯嘉(1993-),男,硕士研究生,从事疟原虫有性阶段基因表达调控研究。E-mail:liangkj@vip.qq.com
基金资助:
LIANG Kejia1(), LIU Cong2, LI Yanlin1, LI Xiaoge1, LIU Yan1, LI Zhenkui1,*(
)
Received:
2023-03-21
Revised:
2023-05-29
Online:
2023-10-30
Published:
2023-11-06
Contact:
*E-mail: Supported by:
摘要:
疟疾是由疟原虫感染所致的传染性疾病。疟疾的传播依赖于疟原虫在脊椎动物和按蚊两个宿主内的交替发育。疟原虫有性配子体阶段是其从脊椎动物传递至按蚊的唯一阶段。疟原虫的有性转化、有性发育和配子发生对疟原虫的传播起重要作用。深入了解疟原虫有性阶段的基因表达及相关调控机制,有助于筛选新的抗疟药物或疫苗靶点。本文对疟原虫有性阶段基因表达转录调控的研究进展进行综述,以期为阻断疟疾传播提供参考。
中图分类号:
梁柯嘉, 刘聪, 李彦霖, 李小鸽, 刘彦, 李贞魁. 疟原虫有性阶段转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 619-624.
LIANG Kejia, LIU Cong, LI Yanlin, LI Xiaoge, LIU Yan, LI Zhenkui. Research advances on transcriptional regulation in plasmodium sexual stages[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(5): 619-624.
[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022. |
[2] | Zhang JX. China officially certified by WHO for malaria elimination[N]. Science and Technology Daily, 2021-07-05(004). (in Chinese) |
(张佳欣. 中国正式获世卫组织消除疟疾认证[N]. 科技日报, 2021-07-05(004).) | |
[3] | Xia ZG, Zhou SS, Tang LH. History, impacts and experience of malaria elimination in China and strategies and prospects after elimination[J]. Infect Dis Inf, 2022, 35(1): 39-45, 59. (in Chinese) |
(夏志贵, 周水森, 汤林华. 中国消除疟疾的历程、意义、主要经验及消除后策略与展望[J]. 传染病信息, 2022, 35(1): 39-45, 59.) | |
[4] | Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) |
(丰俊, 张丽, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | |
[5] |
Josling GA, Williamson KC, Llinás M. Regulation of sexual commitment and gametocytogenesis in malaria parasites[J]. Annu Rev Microbiol, 2018, 72: 501-519.
doi: 10.1146/annurev-micro-090817-062712 pmid: 29975590 |
[6] |
Dash M, Sachdeva S, Bansal A, et al. Gametogenesis in Plasmodium: delving deeper to connect the dots[J]. Front Cell Infect Microbiol, 2022, 12: 877907.
doi: 10.3389/fcimb.2022.877907 |
[7] |
Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624.
doi: S0092-8674(16)31008-X pmid: 27768886 |
[8] | Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. MemInst Oswaldo Cruz, 2014, 109(5): 644-661. |
[9] |
Hahn S. Structure and mechanism of the RNA polymerase Ⅱtranscription machinery[J]. Nat Struct Mol Biol, 2004, 11(5): 394-403.
doi: 10.1038/nsmb763 |
[10] |
Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum[J]. BMC Genomics, 2010, 11: 34.
doi: 10.1186/1471-2164-11-34 |
[11] | Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites[J]. Nucleic Acids Res, 2009, 37(Database issue): D539-D543. |
[12] |
López-Barragán MJ, Lemieux J, Quiñones M, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum[J]. BMC Genomics, 2011, 12: 587.
doi: 10.1186/1471-2164-12-587 pmid: 22129310 |
[13] |
Bertschi NL, Toenhake CG, Zou A, et al. Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor ⅢA[J]. Nat Microbiol, 2017, 2: 17033.
doi: 10.1038/nmicrobiol.2017.33 pmid: 28288093 |
[14] | Gopalakrishnan AM, Aly ASI, Aravind L, et al. Multifunctional involvement of a C2H2 zinc finger protein (PbZfp) in malaria transmission, histone modification, and susceptibility to DNA damage response[J]. mBio, 2017, 8(4): e01298-e01217. |
[15] |
Travers AA. Priming the nucleosome: a role for HMGB proteins?[J]. EMBO Rep, 2003, 4(2): 131-136.
pmid: 12612600 |
[16] | Lu BB, Liu M, Gu L, et al. The architectural factor HMGB1 is involved in genome organization in the human malaria parasite Plasmodium falciparum[J]. mBio, 2021, 12(2): e00148-e00121. |
[17] |
Kumar S, Kappe SHI. PfHMGB2 has a role in malaria parasite mosquito infection[J]. Front Cell Infect Microbiol, 2022, 12: 1003214.
doi: 10.3389/fcimb.2022.1003214 |
[18] |
Jofuku KD, den Boer BG, van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene apetala2[J]. Plant Cell, 1994, 6(9): 1211-1225.
doi: 10.1105/tpc.6.9.1211 pmid: 7919989 |
[19] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[20] |
Balaji S, Babu MM, Iyer LM, et al. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains[J]. Nucleic Acids Res, 2005, 33(13): 3994-4006.
pmid: 16040597 |
[21] | Iyer LM, Anantharaman V, Wolf MY, et al. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes[J]. IntJParasitol, 2008, 38(1): 1-31. |
[22] |
Campbell TL, De Silva EK, Olszewski KL, et al. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite[J]. PLoS Pathog, 2010, 6(10): e1001165.
doi: 10.1371/journal.ppat.1001165 |
[23] |
Santos JM, Josling G, Ross P, et al. Red blood cell invasion by the malaria parasite is coordinated by the PfAP2-Ⅰ transcription factor[J]. Cell Host Microbe, 2017, 21(6): 731-741.e10.
doi: 10.1016/j.chom.2017.05.006 |
[24] |
Martins RM, MacPherson CR, Claes A, et al. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum[J]. Sci Rep, 2017, 7(1): 14042.
doi: 10.1038/s41598-017-12578-y pmid: 29070841 |
[25] |
Sinha A, Hughes KR, Modrzynska KK, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium[J]. Nature, 2014, 507(7491): 253-257.
doi: 10.1038/nature12970 |
[26] |
Kafsack BFC, Rovira-Graells N, Clark TG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites[J]. Nature, 2014, 507(7491): 248-252.
doi: 10.1038/nature12920 |
[27] |
Yuda MS, Iwanaga S, Kaneko I, et al. Global transcriptional repression: an initial and essential step for Plasmodium sexual development[J]. Proc Natl Acad Sci USA, 2015, 112(41): 12824-12829.
doi: 10.1073/pnas.1504389112 |
[28] |
Yuda MS, Iwanaga S, Shigenobu S, et al. Transcription factor AP2-Sp and its target genes in malarial sporozoites[J]. Mol Microbiol, 2010, 75(4): 854-863.
doi: 10.1111/j.1365-2958.2009.07005.x pmid: 20025671 |
[29] |
Yuda MS, Iwanaga S, Shigenobu S, et al. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites[J]. Mol Microbiol, 2009, 71(6): 1402-1414.
doi: 10.1111/j.1365-2958.2009.06609.x pmid: 19220746 |
[30] |
Iwanaga S, Kaneko I, Kato T, et al. Identification of an AP2-family protein that is critical for malaria liver stage development[J]. PLoS One, 2012, 7(11): e47557.
doi: 10.1371/journal.pone.0047557 |
[31] |
Tintó-Font E, Michel-Todó L, Russell TJ, et al. A heat-shock response regulated by the PfAP2-HS transcription factor protects human malaria parasites from febrile temperatures[J]. Nat Microbiol, 2021, 6(9): 1163-1174.
doi: 10.1038/s41564-021-00940-w pmid: 34400833 |
[32] |
Modrzynska K, Pfander C, Chappell L, et al. A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle[J]. Cell Host Microbe, 2017, 21(1): 11-22.
doi: S1931-3128(16)30514-5 pmid: 28081440 |
[33] | Zhang C, Li ZK, Cui HT, et al. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development[J]. mBio, 2017, 8(6): e01986-e01917. |
[34] |
Josling GA, Russell TJ, Venezia J, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis[J]. Nat Commun, 2020, 11(1): 1503.
doi: 10.1038/s41467-020-15026-0 pmid: 32198457 |
[35] |
Bancells C, Llorà-Batlle O, Poran A, et al. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum[J]. Nat Microbiol, 2019, 4(1): 144-154.
doi: 10.1038/s41564-018-0291-7 |
[36] | Ikadai H, Shaw Saliba K, Kanzok SM, et al. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis[J]. Proc Natl Acad Sci USA, 2013, 110(18): E1676-E1684. |
[37] |
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it’s time to commit[J]. Nat Rev Microbiol, 2015, 13(9): 573-587.
doi: 10.1038/nrmicro3519 |
[38] |
Shang XM, Shen SJ, Tang JX, et al. A cascade of transcriptional repression determines sexual commitment and development in Plasmodium falciparum[J]. Nucleic Acids Res, 2021, 49(16): 9264-9279.
doi: 10.1093/nar/gkab683 |
[39] |
Brancucci NMB, Bertschi NL, Zhu L, et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites[J]. Cell Host Microbe, 2014, 16(2): 165-176.
doi: S1931-3128(14)00258-3 pmid: 25121746 |
[40] |
Coleman BI, Skillman KM, Jiang RHY, et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion[J]. Cell Host Microbe, 2014, 16(2): 177-186.
doi: 10.1016/j.chom.2014.06.014 |
[41] |
Clark RF, Elgin SC. Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila[J]. Nucleic Acids Res, 1992, 20(22): 6067-6074.
doi: 10.1093/nar/20.22.6067 pmid: 1461737 |
[42] |
Eissenberg JC, James TC, Foster-Hartnett DM, et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster[J]. Proc Natl Acad Sci USA, 1990, 87(24): 9923-9927.
doi: 10.1073/pnas.87.24.9923 pmid: 2124708 |
[43] |
Flueck C, Bartfai R, Volz J, et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors[J]. PLoS Pathog, 2009, 5(9): e1000569.
doi: 10.1371/journal.ppat.1000569 |
[44] |
Pérez-Toledo K, Rojas-Meza AP, Mancio-Silva L, et al. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes[J]. Nucleic Acids Res, 2009, 37(8): 2596-2606.
doi: 10.1093/nar/gkp115 pmid: 19270070 |
[45] |
Lopez-Rubio JJ, Mancio-Silva L, Scherf A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites[J]. Cell Host Microbe, 2009, 5(2): 179-190.
doi: 10.1016/j.chom.2008.12.012 pmid: 19218088 |
[46] |
Zhang CL, McKinsey TA, Olson EN. Association of class Ⅱ histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation[J]. Mol Cell Biol, 2002, 22(20): 7302-7312.
doi: 10.1128/MCB.22.20.7302-7312.2002 pmid: 12242305 |
[47] | Yamada T, Fischle W, Sugiyama T, et al. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast[J]. MolCell, 2005, 20(2): 173-185. |
[48] |
Eksi S, Morahan BJ, Haile Y, et al. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development[J]. PLoS Pathog, 2012, 8(10): e1002964.
doi: 10.1371/journal.ppat.1002964 |
[49] |
Filarsky M, Fraschka SA, Niederwieser I, et al. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing[J]. Science, 2018, 359(6381): 1259-1263.
doi: 10.1126/science.aan6042 pmid: 29590075 |
[50] |
Smith TG, Walliker D, Ranford-Cartwright LC. Sexual differentiation and sex determination in the Apicomplexa[J]. Trends Parasitol, 2002, 18(7): 315-323.
pmid: 12379952 |
[51] |
Silvestrini F, Alano P, Williams JL. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum[J]. Parasitology, 2000, 121 Pt 5: 465-471.
pmid: 11128797 |
[52] |
Gomes AR, Marin-Menendez A, Adjalley SH, et al. A transcriptional switch controls sex determination in Plasmodium falciparum[J]. Nature, 2022, 612(7940): 528-533.
doi: 10.1038/s41586-022-05509-z |
[53] |
Russell AJC, Sanderson T, Bushell E, et al. Regulators of male and female sexual development are critical for the transmission of a malaria parasite[J]. Cell Host Microbe, 2023, 31(2): 305-319.e10.
doi: 10.1016/j.chom.2022.12.011 pmid: 36634679 |
[54] |
Singh S, Santos JM, Orchard LM, et al. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation[J]. Mol Microbiol, 2021, 115(5): 1005-1024.
doi: 10.1111/mmi.14676 pmid: 33368818 |
[55] |
Yuda MS, Kaneko I, Iwanaga S, et al. Female-specific gene regulation in malaria parasites by an AP2-family transcription factor[J]. Mol Microbiol, 2020, 113(1): 40-51.
doi: 10.1111/mmi.14334 pmid: 31231888 |
[56] |
Bunnik EM, Cook KB, Varoquaux N, et al. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages[J]. Nat Commun, 2018, 9(1): 1910.
doi: 10.1038/s41467-018-04295-5 |
[57] |
Li ZK, Cui HT, Guan JP, et al. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes[J]. EMBO Rep, 2021, 22(5): e51660.
doi: 10.15252/embr.202051660 |
[58] |
Nishi T, Kaneko I, Iwanaga S, et al. PbAP2-FG2 and PbAP2R-2 function together as a transcriptional repressor complex essential for Plasmodium female development[J]. PLoS Pathog, 2023, 19(2): e1010890.
doi: 10.1371/journal.ppat.1010890 |
[59] |
Nishi T, Kaneko I, Iwanaga S, et al. Identification of a novel AP2 transcription factor in zygotes with an essential role in Plasmodium ookinete development[J]. PLoS Pathog, 2022, 18(8): e1010510.
doi: 10.1371/journal.ppat.1010510 |
[60] |
Kirkman LA, Deitsch KW. Vive la différence: exploiting the differences between rodent and human malarias[J]. Trends Parasitol, 2020, 36(6): 504-511.
doi: S1471-4922(20)30073-8 pmid: 32407681 |
[61] |
Ngotho P, Soares AB, Hentzschel F, et al. Revisiting gametocyte biology in malaria parasites[J]. FEMS Microbiol Rev, 2019, 43(4): 401-414.
doi: 10.1093/femsre/fuz010 pmid: 31220244 |
[62] |
Dixon MWA, Tilley L. Plasmodium falciparum goes bananas for sex[J]. Mol Biochem Parasitol, 2021, 244: 111385.
doi: 10.1016/j.molbiopara.2021.111385 |
[63] |
Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators[J]. Genetics, 2011, 189(3): 705-736.
doi: 10.1534/genetics.111.127019 |
[64] | Zhang HM, Chen H, Liu W, et al. Animal TFDB: a comprehensive animal transcription factor database[J]. Nucleic Acids Res, 2012, 40(Database issue): D144-D149. |
[1] | 郭帅, 何彪, 高源利, 范永铃, 朱锋, 丁艳, 刘太平, 徐文岳. 鼠疟原虫感染大鼠和小鼠的种特异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 539-545. |
[2] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[3] | 丁红芸, 董莹, 徐艳春, 邓艳, 刘言, 吴静, 陈梦妮, 张苍林. 云南省输入性间日疟原虫多药抗性蛋白1基因突变多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 404-411. |
[4] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[5] | 孙军. 疟原虫色素形成的生物学意义[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 209-212. |
[6] | 李美, 肖宁, 夏志贵. 基于无性期18S rDNA特异性引物检测5种疟原虫qPCR的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 36-43. |
[7] | 石天琪, 陈军虎. 间日疟原虫入侵网织红细胞相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 396-401. |
[8] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
[9] | 蒋永茂, 高涵, 王四宝. 疟疾防控新策略:利用按蚊肠道共生菌阻断疟原虫传播[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 140-145. |
[10] | 江莉, 张耀光, 刘红霞, 王真瑜, 朱民, 吴寰宇. 疟疾蚊媒监测多重PCR方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 159-167. |
[11] | 佘丹娅, 卢丽丹, 兰子尧, 黄雨婷, 梁文琴. 输入性重症恶性疟1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 269-271. |
[12] | 田斌, 廖瑜, 文岚, 肖芳, 张兵, 申晓君. 长沙市122例输入性恶性疟原虫多药抗性基因1拷贝数变异分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 127-131. |
[13] | 陈穗林, 高源利, 郭帅, 范永铃, 刘太平, 徐文岳. 高剂量氯磷酸脂质体处理对小鼠体内约氏疟原虫生长的影响及机制初探[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 28-35. |
[14] | 石明丽, 肖波, 江陆斌. 恶性疟原虫var基因的表达调控机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 719-724. |
[15] | 于嘉利, 刘蕾, 杨博, 楚瑞林, 孙毅凡, 刘耀宝, 程洋. 重组卵形疟原虫裂殖子表面蛋白1 N端的抗原性及免疫原性分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 746-752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||