[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022. | [2] | Zhang JX. China officially certified by WHO for malaria elimination[N]. Science and Technology Daily, 2021-07-05(004). (in Chinese) | | (张佳欣. 中国正式获世卫组织消除疟疾认证[N]. 科技日报, 2021-07-05(004).) | [3] | Xia ZG, Zhou SS, Tang LH. History, impacts and experience of malaria elimination in China and strategies and prospects after elimination[J]. Infect Dis Inf, 2022, 35(1): 39-45, 59. (in Chinese) | | (夏志贵, 周水森, 汤林华. 中国消除疟疾的历程、意义、主要经验及消除后策略与展望[J]. 传染病信息, 2022, 35(1): 39-45, 59.) | [4] | Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) | | (丰俊, 张丽, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | [5] | Josling GA, Williamson KC, Llinás M. Regulation of sexual commitment and gametocytogenesis in malaria parasites[J]. Annu Rev Microbiol, 2018, 72: 501-519. | [6] | Dash M, Sachdeva S, Bansal A, et al. Gametogenesis in Plasmodium: delving deeper to connect the dots[J]. Front Cell Infect Microbiol, 2022, 12: 877907. | [7] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624. | [8] | Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector[J]. MemInst Oswaldo Cruz, 2014, 109(5): 644-661. | [9] | Hahn S. Structure and mechanism of the RNA polymerase Ⅱtranscription machinery[J]. Nat Struct Mol Biol, 2004, 11(5): 394-403. | [10] | Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum[J]. BMC Genomics, 2010, 11: 34. | [11] | Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites[J]. Nucleic Acids Res, 2009, 37(Database issue): D539-D543. | [12] | López-Barragán MJ, Lemieux J, Qui?ones M, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum[J]. BMC Genomics, 2011, 12: 587. | [13] | Bertschi NL, Toenhake CG, Zou A, et al. Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor ⅢA[J]. Nat Microbiol, 2017, 2: 17033. | [14] | Gopalakrishnan AM, Aly ASI, Aravind L, et al. Multifunctional involvement of a C2H2 zinc finger protein (PbZfp) in malaria transmission, histone modification, and susceptibility to DNA damage response[J]. mBio, 2017, 8(4): e01298-e01217. | [15] | Travers AA. Priming the nucleosome: a role for HMGB proteins?[J]. EMBO Rep, 2003, 4(2): 131-136. | [16] | Lu BB, Liu M, Gu L, et al. The architectural factor HMGB1 is involved in genome organization in the human malaria parasite Plasmodium falciparum[J]. mBio, 2021, 12(2): e00148-e00121. | [17] | Kumar S, Kappe SHI. PfHMGB2 has a role in malaria parasite mosquito infection[J]. Front Cell Infect Microbiol, 2022, 12: 1003214. | [18] | Jofuku KD, den Boer BG, van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene apetala2[J]. Plant Cell, 1994, 6(9): 1211-1225. | [19] | Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182. | [20] | Balaji S, Babu MM, Iyer LM, et al. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains[J]. Nucleic Acids Res, 2005, 33(13): 3994-4006. | [21] | Iyer LM, Anantharaman V, Wolf MY, et al. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes[J]. IntJParasitol, 2008, 38(1): 1-31. | [22] | Campbell TL, De Silva EK, Olszewski KL, et al. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite[J]. PLoS Pathog, 2010, 6(10): e1001165. | [23] | Santos JM, Josling G, Ross P, et al. Red blood cell invasion by the malaria parasite is coordinated by the PfAP2-Ⅰ transcription factor[J]. Cell Host Microbe, 2017, 21(6): 731-741.e10. | [24] | Martins RM, MacPherson CR, Claes A, et al. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum[J]. Sci Rep, 2017, 7(1): 14042. | [25] | Sinha A, Hughes KR, Modrzynska KK, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium[J]. Nature, 2014, 507(7491): 253-257. | [26] | Kafsack BFC, Rovira-Graells N, Clark TG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites[J]. Nature, 2014, 507(7491): 248-252. | [27] | Yuda MS, Iwanaga S, Kaneko I, et al. Global transcriptional repression: an initial and essential step for Plasmodium sexual development[J]. Proc Natl Acad Sci USA, 2015, 112(41): 12824-12829. | [28] | Yuda MS, Iwanaga S, Shigenobu S, et al. Transcription factor AP2-Sp and its target genes in malarial sporozoites[J]. Mol Microbiol, 2010, 75(4): 854-863. | [29] | Yuda MS, Iwanaga S, Shigenobu S, et al. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites[J]. Mol Microbiol, 2009, 71(6): 1402-1414. | [30] | Iwanaga S, Kaneko I, Kato T, et al. Identification of an AP2-family protein that is critical for malaria liver stage development[J]. PLoS One, 2012, 7(11): e47557. | [31] | Tintó-Font E, Michel-Todó L, Russell TJ, et al. A heat-shock response regulated by the PfAP2-HS transcription factor protects human malaria parasites from febrile temperatures[J]. Nat Microbiol, 2021, 6(9): 1163-1174. | [32] | Modrzynska K, Pfander C, Chappell L, et al. A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle[J]. Cell Host Microbe, 2017, 21(1): 11-22. | [33] | Zhang C, Li ZK, Cui HT, et al. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development[J]. mBio, 2017, 8(6): e01986-e01917. | [34] | Josling GA, Russell TJ, Venezia J, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis[J]. Nat Commun, 2020, 11(1): 1503. | [35] | Bancells C, Llorà-Batlle O, Poran A, et al. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum[J]. Nat Microbiol, 2019, 4(1): 144-154. | [36] | Ikadai H, Shaw Saliba K, Kanzok SM, et al. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis[J]. Proc Natl Acad Sci USA, 2013, 110(18): E1676-E1684. | [37] | Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it’s time to commit[J]. Nat Rev Microbiol, 2015, 13(9): 573-587. | [38] | Shang XM, Shen SJ, Tang JX, et al. A cascade of transcriptional repression determines sexual commitment and development in Plasmodium falciparum[J]. Nucleic Acids Res, 2021, 49(16): 9264-9279. | [39] | Brancucci NMB, Bertschi NL, Zhu L, et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites[J]. Cell Host Microbe, 2014, 16(2): 165-176. | [40] | Coleman BI, Skillman KM, Jiang RHY, et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion[J]. Cell Host Microbe, 2014, 16(2): 177-186. | [41] | Clark RF, Elgin SC. Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila[J]. Nucleic Acids Res, 1992, 20(22): 6067-6074. | [42] | Eissenberg JC, James TC, Foster-Hartnett DM, et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster[J]. Proc Natl Acad Sci USA, 1990, 87(24): 9923-9927. | [43] | Flueck C, Bartfai R, Volz J, et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors[J]. PLoS Pathog, 2009, 5(9): e1000569. | [44] | Pérez-Toledo K, Rojas-Meza AP, Mancio-Silva L, et al. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes[J]. Nucleic Acids Res, 2009, 37(8): 2596-2606. | [45] | Lopez-Rubio JJ, Mancio-Silva L, Scherf A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites[J]. Cell Host Microbe, 2009, 5(2): 179-190. | [46] | Zhang CL, McKinsey TA, Olson EN. Association of class Ⅱ histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation[J]. Mol Cell Biol, 2002, 22(20): 7302-7312. | [47] | Yamada T, Fischle W, Sugiyama T, et al. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast[J]. MolCell, 2005, 20(2): 173-185. | [48] | Eksi S, Morahan BJ, Haile Y, et al. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development[J]. PLoS Pathog, 2012, 8(10): e1002964. | [49] | Filarsky M, Fraschka SA, Niederwieser I, et al. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing[J]. Science, 2018, 359(6381): 1259-1263. | [50] | Smith TG, Walliker D, Ranford-Cartwright LC. Sexual differentiation and sex determination in the Apicomplexa[J]. Trends Parasitol, 2002, 18(7): 315-323. | [51] | Silvestrini F, Alano P, Williams JL. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum[J]. Parasitology, 2000, 121 Pt 5: 465-471. | [52] | Gomes AR, Marin-Menendez A, Adjalley SH, et al. A transcriptional switch controls sex determination in Plasmodium falciparum[J]. Nature, 2022, 612(7940): 528-533. | [53] | Russell AJC, Sanderson T, Bushell E, et al. Regulators of male and female sexual development are critical for the transmission of a malaria parasite[J]. Cell Host Microbe, 2023, 31(2): 305-319.e10. | [54] | Singh S, Santos JM, Orchard LM, et al. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation[J]. Mol Microbiol, 2021, 115(5): 1005-1024. | [55] | Yuda MS, Kaneko I, Iwanaga S, et al. Female-specific gene regulation in malaria parasites by an AP2-family transcription factor[J]. Mol Microbiol, 2020, 113(1): 40-51. | [56] | Bunnik EM, Cook KB, Varoquaux N, et al. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages[J]. Nat Commun, 2018, 9(1): 1910. | [57] | Li ZK, Cui HT, Guan JP, et al. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes[J]. EMBO Rep, 2021, 22(5): e51660. | [58] | Nishi T, Kaneko I, Iwanaga S, et al. PbAP2-FG2 and PbAP2R-2 function together as a transcriptional repressor complex essential for Plasmodium female development[J]. PLoS Pathog, 2023, 19(2): e1010890. | [59] | Nishi T, Kaneko I, Iwanaga S, et al. Identification of a novel AP2 transcription factor in zygotes with an essential role in Plasmodium ookinete development[J]. PLoS Pathog, 2022, 18(8): e1010510. | [60] | Kirkman LA, Deitsch KW. Vive la différence: exploiting the differences between rodent and human malarias[J]. Trends Parasitol, 2020, 36(6): 504-511. | [61] | Ngotho P, Soares AB, Hentzschel F, et al. Revisiting gametocyte biology in malaria parasites[J]. FEMS Microbiol Rev, 2019, 43(4): 401-414. | [62] | Dixon MWA, Tilley L. Plasmodium falciparum goes bananas for sex[J]. Mol Biochem Parasitol, 2021, 244: 111385. | [63] | Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators[J]. Genetics, 2011, 189(3): 705-736. | [64] | Zhang HM, Chen H, Liu W, et al. Animal TFDB: a comprehensive animal transcription factor database[J]. Nucleic Acids Res, 2012, 40(Database issue): D144-D149. |
|